99
Views
5
CrossRef citations to date
0
Altmetric
Review

Improved pharmacokinetic characteristics and bioactive effects of anticancer enzyme delivery systems

, , , , , , , & ORCID Icon show all
Pages 951-960 | Received 04 Mar 2018, Accepted 25 Jul 2018, Published online: 06 Aug 2018

References

  • Global Burden of Disease Cancer Collaboration. Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018; [PMID: 29860482]. DOI:10.1001/jamaoncol.2018.2706
  • Znaor A, van den Hurk C, Primic-Zakeljx M, et al. Cancer incidence and mortality patterns in South Eastern Europe in the last decade: gaps persist compared with the rest of Europe. Eur J Cancer. 2013;49:1683–1691. PubMed: 23265703.
  • Pokrovsky VS, Chepikova OE, Davydov DZ, et al. Amino acid degrading enzymes and their application in cancer therapy. Curr Med Chem. 2017; DOI:10.2174/0929867324666171006132729. [PMID: 28990519].
  • Chhim RF, Shelton CM, Christensen ML. Recent new drug approvals, part 2: drugs undergoing active clinical studies in children. J Pediatr Pharmacol Ther. 2013;18(1):14–38. [PMID: 23616733].
  • Verma MK, Pulicherla KK. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential. Amino Acids. 2016;48:941–948. [PubMed: 26739820]
  • Yang L, Yan S, Zhang Y, et al. Novel enzyme formulations for improved pharmacokinetic properties and anti-inflammatory efficacies. Int J Pharm. 2018;537(1–2):268–277.
  • Asselin B, Rizzari C. Asparaginase pharmacokinetics and implications of therapeutic drug monitoring. Leuk Lymphoma. 2015;56:2273–2280. PubMed: 25586605
  • Hunault-Berger M, Leguay T, Huguet F, et al. A phase 2 study of l-asparaginase encapsulated in erythrocytes in elderly patients with Philadelphia chromosome negative acute lymphoblastic leukemia: the GRASPALL/GRAALL-SA2-2008 study. Am J Hematol. 2015;90:811–818. PubMed: 26094614.
  • Yau T, Cheng PN, Chan P, et al. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs. 2013;31:99–107. PubMed: 22426640.
  • Zhu L, Wu Z, Jin JM, et al. Directed evolution of leucine dehydrogenase for improved efficiency of l-tert-leucine synthesis. Appl Microbiol Biotechnol. 2016;100(13):513–5805. PMID: 26898942.
  • Turgut Kara N, Çakır Ö, Arıkan B, et al. Molecular cloning and biotic elicitation response of phenylalanine ammonia-lyase gene of Astragalus chrysochlorus. Cell Mol Biol (Noisy-Le-Grand). 2018;64(5):102–106. [PMID: 29729701].
  • Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet. 2013;38(4):231–239.
  • Reda FM. Kinetic properties of Streptomyces canarius l-glutaminase and its anticancer efficiency. Braz J Microbiol. 2015;46:957–968. PubMed: 26691453
  • Han RZ, Xu GC, Dong JJ, et al. Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Appl Microbiol Biotechnol. 2016;100:4747–4760. PubMed: 27087524.
  • Ni Y, Schwaneberg U, Sun ZH. Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 2008;261:1–11. PubMed: 18179862
  • Sharma B, Singh S, Kanwar SS. l-Methionase: a therapeutic enzyme to treat malignancies. Biomed Res Int. 2014;2014:506287. PubMed: 25250324.
  • Batool T, Makky EA, Jalal M, et al. A comprehensive review on l-asparaginase and its applications. Appl Biochem Biotechnol. 2016;178:900–923. PubMed: 26547852.
  • Shrivastava A, Khan AA, Khurshid M, et al. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol. 2016;100:1–10. PubMed: 25630663.
  • Cheng PN, Lam TL, Lam WM, et al. Pegylated recombinant human arginase (rhArg-peg5.000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007;67:309–317. PubMed: 17210712.
  • Covini D, Tardito S, Bussolati O, et al. Expanding targets for a metabolic therapy of cancer: l-asparaginase. Recent Pat Anticancer Drug Discov. 2012;7:4–13. PubMed: 21854356.
  • Pokrovsky VS, Chepikova OE, Davydov DZ, et al. Amino acid degrading enzymes and their application in cancer therapy. Curr Med Chem. 2017; DOI:10.2174/0929867324666171006132729. [PMID: 28990519].
  • Plourde PV, Jeha S, Hijiya N, et al. Safety profile of asparaginase Erwinia chrysanthemi in a large compassionate-use trial. Pediatr Blood Cancer. 2014;61:1232–1238. PubMed: 24436152.
  • Vrooman LM, Kirov II, Dreyer ZE, et al. Activity and toxicity of intravenous Erwinia asparaginase following allergy to E. coli-derived asparaginase in children and adolescents with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2016;63:228–233. PubMed: 26376459.
  • Tomlinson BK, Thomson JA, Bomalaski JS, et al. Phase I trial of arginine deprivation therapy with ADI-PEG 20 plus docetaxel in patients with advanced malignant solid tumors. Clin Cancer Res. 2015;21:2480–2486. PubMed: 25739672.
  • Bachet JB, Gay F, Maréchal R, et al. Asparagine synthetase expression and phase I study with l-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. Pancreas. 2015;44:1141–1147. PubMed: 26355551.
  • Fultang L, Vardon A, De-Santo C, et al. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int J Cancer. 2016;139:501–509. PubMed: 26913960.
  • Tanios R, Bekdash A, Kassab E, et al. Human recombinant arginase I(Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human acute myeloid leukemia cells. Leuk Res. 2013;37:1565–1571. PubMed: 24018014.
  • Marini JC, Didelija IC. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice. PLoS ONE. 2015;10:e0119801. PubMed: 25775142
  • Nguyen HA, Su Y, Zhang JY, et al. A novel l-asparaginase with low l-glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic leukemias in vivo. Cancer Res. 2018;78(6):1549–1560. [PMID: 29343523].
  • Ortac I, Simberg D, Yeh YS, et al. Dual-porosity hollow nanoparticles for the immunoprotection and delivery of nonhuman enzymes. Nano Lett. 2014;14:3023–3032. PubMed: 24471767.
  • Burrows N, Cane G, Robson M, et al. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20). Sci Rep. 2016;6:22950. PubMed: 26972697.
  • Agostinelli E, Vianello F, Magliulo G, et al. Nanoparticle strategies for cancer therapeutics: nucleic acids. Polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Int J Oncol. 2015;46:5–16. PubMed: 25333509.
  • Vasudev SS, Ahmad S, Parveen R, et al. Formulation of PEG-ylated l-asparaginase loaded poly (lactide-co-glycolide) nanoparticles: influence of pegylation on enzyme loading, activity and in vitro release. Pharmazie. 2011;66:956–960. PubMed: 22312702.
  • Xin L, Zhang HT, Yang WF, et al. Evaluation of METase-pemetrexed-loaded PEG-PLGA nanoparticles modified with anti-CD133-scFV for treatment of gastric carcinoma. Biosci Rep. 2018;38(1). DOI:10.1042/BSR20171001 PMID: 29229675.
  • Gil MS, Cho J, Thambi T, et al. Bioengineered robust hybrid hydrogels enrich the stability and efficacy of biological drugs. J Control Release. 2017;267:119–132. PubMed: 28412223.
  • Ott PA, Carvajal RD, Pandit-Taskar N, et al. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest. New Drugs. 2013;31:425–434. PubMed: 22864522.
  • El-Sayed AS, Shouman SA, Nassrat HM. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes l-methioninase. Enzyme Microb Technol. 2012;51:200–210. PubMed: 22883554
  • Bahreini E, Aghaiypour K, Abbasalipourkabir R, et al. Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett. 2014;9:340. PubMed: 25114635.
  • Baskar G, Chandhuru J, Sheraz Fahad K, et al. Anticancer activity of fungal l-asparaginase conjugated with zinc oxide nanoparticles. J Mater Sci Mater Med. 2015;26:5380. PubMed: 25589205.
  • Varshosaz J, Anvari N. Enhanced stability of l-asparaginase by its bioconjugation to poly(styrene-co-maleic acid) and Ecoflex nanoparticles. IET Nanobiotechnol. 2018;12(4):466–472. [PMID:29768231].
  • Wang F, Zhang YQ. Bioconjugation of silk fibroin nanoparticles with enzyme and peptide and their characterization. Adv Protein Chem Struct Biol. 2015;98:263–291. PubMed: 25819282
  • Venditti I, Hassanein TF, Fratoddi I, et al. Bioconjugation of gold-polymer core-shell nanoparticles with bovine serum amine oxidase for biomedical applications. Colloids Surf B Biointerfaces. 2015;134:314–321. PubMed: 26209964.
  • Ulu A, Ozcan I, Koytepe S, et al. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization. Int J Biol Macromol. 2018;115:1122–1130. [PMID: 29727644].
  • Sinigaglia G, Magro M, Miotto G, et al. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. Int J Nanomedicine. 2012;7:2249–2259. PubMed: 22619559.
  • Pandian SR, Deepak V, Nellaiah H, et al. PEG-PHB-glutaminase nanoparticle inhibits cancer cell proliferation in vitro through glutamine deprivation. Dev Biol Anim. 2015;51:372–380. PubMed: 25424834.
  • Muthukumar T, Chamundeeswari M, Prabhavathi S, et al. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur J Pharm Biopharm. 2014;88:730–736. PubMed: 25305584.
  • Kurinomaru T, Shiraki K. Noncovalent PEGylation of l-asparaginase using PEGylated polyelectrolyte. J. Pharm. Sci. 2015;104(2):587–592. PubMed: 25354692.
  • Kwon YM, Chung HS, Moon C, et al. l-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release. 2009;139:182–189. PubMed: 19577600.
  • Xin L, Caot JQ, Liu C, et al. Evaluation of rMETase-loaded stealth PLGA/liposomes modified with anti-CAGE scFV for treatment of gastric carcinoma. J Biomed Nanotechnol. 2015;11:1153–1161. PubMed: 19577600.
  • Wu FL, Yeh TH, Chen YL, et al. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Mol Pharm. 2014;11:2777–2786. PubMed: 24950134.
  • Zeng T, Zhang Y, Yan Q, et al. Construction and in vitro evaluation of enzyme nanoreactors based on carboxymethyl chitosan for arginine deprivation in cancer therapy. Carbohydr Polym. 2017;162:35–41. PMID: 28224892.
  • Tabandeh MR, Aminlari M. Synthesis, physicochemical and immunological properties of oxidized inulin-l-asparaginase bioconjugate. J Biotechnol. 2009;141:189–195. PubMed: 19433225
  • Yang W, Zhang H, Xin L. A novel design of HA-coated nanoparticles co-encapsulating plasmid METase and 5-Fu shows enhanced application in targeting gastric cancer stem cells. Biol Chem. 2018;399(3):293–303. PMID: 29016350.
  • Angiolillo AL, Schore RJ, Devidas M, et al. Pharmacokinetic and pharmacodynamic properties of calaspargase pegol Escherichia coli l-asparaginase in the treatment of patients with acute lymphoblastic leukemia: results from children’s oncology group study AALL07P4. J Clin Oncol. 2014;32:3874–3882. PubMed: 25348002.
  • Ashrafi H, Amini M, Mohammadi-Samani S, et al. Nanostructure l-asparaginase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment. Int J Biol Macromol. 2013;62:180–187. PubMed: 23994737.
  • Yeh TH, Chen YR, Chen SY, et al. Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells. Mol Pharm. 2016;13:262–271. PubMed: 26642391.
  • Borghorst S, Hempel G, Poppenborg S, et al. Comparative pharmacokinetic/pharmacodynamic characterisation of a new pegylated recombinant E. coli l-asparaginase preparation (MC0609) in beagle dog. Cancer Chemother Pharmacol. 2014;74:367–378. PubMed: 24934864.
  • Poppenborg SM, Wittmann J, Walther W, et al. Impact of anti-PEG IgM antibodies on the pharmacokinetics of pegylated asparaginase preparations in mice. Eur J Pharm Sci. 2016;91:122–130. PubMed: 27292820.
  • Wan S, He D, Yuan Y, et al. Chitosan-modified lipid nanovesicles for efficient systemic delivery of l-asparaginase. Colloids Surf B: Biointerfaces. 2016;143:278–284. PubMed: 27022867.
  • Takaku H, Takase M, Abe S, et al. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer. 1992;51:244–249. PubMed: 1568792.
  • Zhang L, Liu M, Jamil S, et al. PEGylation and pharmacological characterization of a potential anti-tumor drug, an engineered arginine deiminase originated from Pseudomonas plecoglossicida. Cancer Lett. 2015;357:346–354. PubMed: 25462857.
  • Yau T, Cheng PN, Chan P, et al. Preliminary efficacy, safety, pharmacokinetics. pharmacodynamics and quality of life study of pegylated recombinant human arginase 1 in patients with advanced hepatocellular carcinoma. Invest New Drugs. 2015;33:496–504. PubMed: 25666409.
  • Yang Z, Wang J, Lu Q, et al. PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res. 2004;64:6673–6678. PubMed: 15374983.
  • Ivens IA, Achanzar W, Baumann A, et al. PEGylated biopharmaceuticals: current experience and considerations for nonclinical development. Toxicol Pathol. 2015;43:959–983. PubMed: 26239651.
  • Pippa N, Merkouraki M, Pispas S, et al. DPPC:MPOx chimeric advanced drug delivery nano systems chi-aDDnSs: physicochemical and structural characterization, stability and drug release studies. Int J Pharm. 2013;450:1–10. PubMed: 23618959.
  • Liu X, Situ A, Kang Y, et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano. 2016;10:2702–2715. PubMed.
  • Yu M, Guo F, Tan F, et al. Dual-targeting nanocarrier system based on thermosensitive liposomes and gold nanorods for cancer thermo-chemotherapy. J Control Release. 2015;215:91–100. PubMed: 26256259.
  • Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today. 2003;8(6):259–266. PubMed: 12623240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.