261
Views
28
CrossRef citations to date
0
Altmetric
Review

The protective role of melatonin in chemotherapy‐induced nephrotoxicity: a systematic review of non-clinical studies

, , , , , , & show all
Pages 937-950 | Received 09 Jun 2018, Accepted 15 Aug 2018, Published online: 09 Sep 2018

References

  • Ahmadi A, Shadboorestan A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer. 2016;68(1):29–39.
  • Haghi‐Aminjan H, Asghari MH, Farhood B, et al. The role of melatonin on chemotherapy‐induced reproductive toxicity. J Pharm Pharmacol. 2018;70(3):291–306.
  • Narmani A, Farhood B, Haghi-Aminjan H, et al. Gadolinium nanoparticles as diagnostic and therapeutic agents: their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol. 2018;44:457–466.
  • Mirzaei H, Sahebkar A, Jaafari MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol. 2017;232(12):3251–3260.
  • Liang XJ, Chen C, Zhao Y, et al. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol. 2010;596:467–488.
  • Valika A, Shirali A. Nephrotoxicity of Chemotherapy Agents. In: Jhaveri K., Salahudeen A. (eds) Onconephrology. New York (NY): Springer; 2015.
  • Yousef MI, Hussien HM. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. Food Chem Toxicol. 2015;78:17–25.
  • Goradel NH, Asghari MH, Moloudizargari M, et al. Melatonin as an angiogenesis inhibitor to combat cancer: mechanistic evidence. Toxicol Appl Pharmacol. 2017;335(15):56–63.
  • Wilczynski W, Lutterschmidt DI. Biological rhythms: melatonin shapes the space–time continuum of social communication. Curr Biol. 2016;26(19):R892–R895.
  • Nasrabadi NN, Ataee R, Abediankenari S, et al. Expression of MT2 receptor in patients with gastric adenocarcinoma and its relationship with clinicopathological features. J Gastrointest Cancer. 2014;45(1):54–60.
  • Rezapoor S, Shirazi A, Abbasi S, et al. Modulation of radiation-induced base excision repair pathway gene expression by melatonin. J Med Phys. 2017;42(4):245–250.
  • Ghobadi A, Shirazi A, Najafi M, et al. melatonin ameliorates radiation-induced oxidative stress at targeted and nontargeted lung tissue. J Med Phys. 2017;42(4):241–244.
  • Vriend J, Reiter RJ. The keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol. 2015;401:213–220.
  • Zhang HM, Zhang Y. Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions. J Pineal Res. 2014;57(2):131–146.
  • García JA, Ortiz F, Miana J, et al. Contribution of inducible and neuronal nitric oxide synthases to mitochondrial damage and melatonin rescue in LPS-treated mice. J Physiol Biochem. 2017;73(2):235–244.
  • Mozaffari S, Abdollahi M. Melatonin, a promising supplement in inflammatory bowel disease: a comprehensive review of evidences. Curr Pharm Des. 2011;17(38):4372–4378.
  • Mozaffari S, Rahimi R, Abdollahi M. Implications of melatonin therapy in irritable bowel syndrome: a systematic review. Curr Pharm Des. 2010;16(33):3646–3655.
  • Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol. 2015;35(3):186.
  • Pazar A, Kolgazi M, Memisoglu A, et al. The neuroprotective and anti‐apoptotic effects of melatonin on hemolytic hyperbilirubinemia‐induced oxidative brain damage. J Pineal Res. 2016;60(1):74–83.
  • Oishi A, Jockers R. Melatonin Receptor MT 1 and MT 2. In: Choi S. (eds) Encyclopedia of Signaling Molecules. New York (NY): Springer. 2016. p. 1–6.
  • Huang YS, Lu KC, Chao TK, et al. Role of melatonin receptor 1A and pituitary homeobox‐1 coexpression in protecting tubular epithelial cells in membranous nephropathy. J Pineal Res. 2018;65(1):e12482.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(264–269):w64.
  • Shokrzadeh M, Ahmadi A, Chabra A, et al. An ethanol extract of Origanum vulgare attenuates cyclophosphamide-induced pulmonary injury and oxidative lung damage in mice. Pharm Biol. 2014;52(10):1229–1236.
  • Rezvanfar M, Sadrkhanlou R, Ahmadi A, et al. Protection of cyclophosphamide-induced toxicity in reproductive tract histology, sperm characteristics, and DNA damage by an herbal source; evidence for role of free-radical toxic stress. Hum Exp Toxicol. 2008;27(12):901–910.
  • Caglayan C, Temel Y, Kandemir FM, et al. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res Int. 2018;25:20968–20984.
  • Goudarzi M, Khodayar MJ, Smt HT, et al. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol. 2017;31(6):625–635.
  • Manda K, Bhatia AL. Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biol Toxicol. 2003;19(6):367–372.
  • Rezvanfar MA, Rezvanfar MA, Shahverdi AR, et al. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol Appl Pharmacol. 2013;266(3):356–365.
  • Hosseinimehr SJ, Asadian R, Naghshvar F, et al. Protective effects of thymol against nephrotoxicity induced by cisplatin with using 99mTc-DMSA in mice. Ren Fail. 2015;37(2):280–284.
  • Dolan ME, El Charif O, Wheeler HE, et al. Clinical and genome-wide analysis of cisplatin-induced peripheral neuropathy in survivors of adult-onset cancer. Clin Cancer Res. 2017;23(19):5757–5768.
  • Yuce A, Atessahin A, Sahna E, et al. The effects of melatonin on plasma homocysteine and oxidative stress parameters in cisplatin-treated rats. Ankara Univ Vet Fak. 2007;54:165–169.
  • Sener G, Satiroglu H, Kabasakal L, et al. The protective effect of melatonin on cisplatin nephrotoxicity. Fundam Clin Pharmacol. 2000;14(6):553–560.
  • Fukutomi J, Fukuda A, Fukuda S, et al. Scavenging activity of indole compounds against cisplatin-induced reactive oxygen species. Life Sci. 2006;80(3):254–257.
  • Hara M, Yoshida M, Nishijima H, et al. Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. J Pineal Res. 2001;30(3):129–138.
  • Yilmaz I, Demiryilmaz I, Turan MI, et al. The protective effect of melatonin and agomelatin against cisplatin-induced nephrotoxicity and oxidative stress in the rat kidney. Lat Am J Pharm. 2013;32(8):1231–1235.
  • Parlakpinar H, Sahna E, Ozer MK, et al. Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury. J Pineal Res. 2002;33(3):161–166.
  • Kim C, Han J, Kim N, et al. The effects of melatonin on cisplatin-induced renal cortical cell injury in rabbits. Korean J Physiol Pharmacol. 2001;5(3):223–230.
  • Kilic U, Kilic E, Tuzcu Z, et al. Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab. 2013;10(1):7.
  • Malla S, Niraula NP, Singh B, et al. Limitations in doxorubicin production from Streptomyces peucetius. Microbiol Res. 2010;165(5):427–435.
  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4):853.
  • Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440.
  • Guo D, Wu C, Jiang H, et al. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B. 2008;93(3):119–126.
  • Zhang L, Yao H-J, Yu Y, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials. 2012;33(2):565–582.
  • Hrenak J, Arendasova K, Rajkovicova R, et al. Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res. 2013;62(Suppl 1):S181–S189.
  • Dziegiel P, Suder E, Surowiak P, et al. Role of exogenous melatonin in reducing the nephrotoxic effect of daunorubicin and doxorubicin in the rat. J Pineal Res. 2002;33(2):95–100.
  • Oz E, Ilhan MN. Effects of melatonin in reducing the toxic effects of doxorubicin. Mol Cell Biochem. 2006;286(1–2):11–15.
  • Karakilcik AZ, Bitiren M, Zerin M, et al. Melatonin increased vitamin C and antioxidant enzyme values in the plasma, heart, liver, and kidney of Adriamycin-treated rats. Turk J Biol. 2015;39(6):925–931.
  • Agapito MT, Antolin Y, del Brio MT, et al. Protective effect of melatonin against adriamycin toxicity in the rat. J Pineal Res. 2001 Aug;31(1):23–30.
  • Montilla PL, Tunez IF, Munoz de Agueda C, et al. Protective Role Melatonin Retinol Palmitate Oxidative Stress Hyperlipidemic Nephropathy Induced by Adriamycin. Rats J Pineal Res. 1998 Sep;25(2):86–93.
  • Tunez I, del Carmen Munoz M, Feijoo M, et al. Melatonin effect on renal oxidative stress under constant light exposure. Cell Biochem Funct. 2003;21(1):35–40.
  • Kajbafzadeh AM, Sabetkish N, Sabetkish S, et al. The ameliorative effect of various antioxidants on Adriamycin-induced fetal renal abnormalities. J Pediatr Urol. 2013;9(6 Pt B):1084–1092.
  • Hagner N, Joerger M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293.
  • Munshi PN, Lubin M, Bertino JR. 6-thioguanine: a drug with unrealized potential for cancer therapy. The Oncologist. 2014;19(7):760–765.
  • Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581.
  • Abraham P, Kolli VK, Rabi S. Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats. Cell Biochem Funct. 2010 Jul;28(5):426–433.
  • Jahovic N, Cevik H, Sehirli AO, et al. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res. 2003 May;34(4):282–287.
  • Oguz E, Kocarslan S, Tabur S, et al. Effects of lycopene alone or combined with melatonin on methotrexate-induced nephrotoxicity in rats. Asian Pac J Cancer Prev. 2015;16(14):6061–6066.
  • Azevedo MI, Pereira AF, Nogueira RB, et al. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain. 2013;9(1):53.
  • Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237(3):219–227.
  • Wu -C-C, Li T-K, Farh L, et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011;333(6041):459–462.
  • Moskowitz AJ, Schöder H, Yahalom J, et al. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin’s lymphoma: a non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol. 2015;16(3):284–292.
  • Um HJ, Kwon TK. Protective effect of melatonin on oxaliplatin-induced apoptosis through sustained Mcl-1 expression and anti-oxidant action in renal carcinoma Caki cells. J Pineal Res. 2010;49(3):283–290.
  • Panahi Y, Saadat A, Shadboorestan A, et al. An Updated Review of Natural Products Intended to Prevent or Treat Oral Mucositis in Patients Undergoing Radio-Chemotherapy. Curr Pharm Biotechnol. 2016;17:949-961.
  • Conklin KAJN. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer. 2000;37:1-18.
  • Lacourciere Y, Belanger A, Godin C, et al. Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney Int. 2000;58:762-769.
  • Bie P, Evans RG. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol (Oxf). 2017;219:288-304.
  • De Sousa A. Psychiatric issues in renal failure and dialysis. Indian J Nephrol. 2008;18:47-50.
  • Hutchison CA, Bradwell AR, Cook M, et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin J Am Soc Nephrol. 2009;4:745-754.
  • El-Awady R, Saleh EHashim A, et al. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol. 2016;7:535.
  • Horie S, Oya M, Nangaku M, et al. Guidelines for treatment of renal injury during cancer chemotherapy 2016. Clin Exp Nephrol. 2018;22:210-244.
  • Saeidnia S, Abdollahi M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol. 2013;273:442–455.
  • Saeidnia S, Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol. 2013;271:49-63.
  • Jafari S, Saeidnia S. Abdollahi m. Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle. Curr Pharm Biotechnol. 2014;15:409–421.
  • Asghari MH, Ghobadi EMoloudizargari M, et al. Does the use of melatonin overcome drug resistance in cancer chemotherapy? LifeSci. 2018;196:143–155.
  • Moloudizargari M, Asghari MH, Ghobadi E, et al. Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res Rev. 2017;40:64–74.
  • Rahimifard M, Navaei-Nigjeh MMahroui N, et al. Improvement in the function of isolated rat pancreatic islets through reduction ofoxidative stress using traditional iranian medicine. Cell J. 2014;16(2):147–163.
  • Bhattacharyya A, Chattopadhyay RMitra S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354.
  • Nobakht-Haghighi N, Rahimifard M, Baeeri M, et al. Regulation of aging and oxidative stress pathways in aged pancreatic islets usingalpha-lipoic acid. Mol Cell Biochem. 2018.
  • Keshavarz-Bahaghighat H, Sepand MR, Ghahremani MH, et al. Acetyl-l-carnitine attenuates arsenic-induced oxidative stress andhippocampal mitochondrial dysfunction. Biol Trace Elem Res. 2018;184(2):422–435.
  • Galano A, Medina ME, Tan DX, et al. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res. 2015;58(1):107–116.
  • Najafi M, Shirazi A, Motevaseli E, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev. 2017;9(2):139–148. Nov
  • Reiter RJ, Tan DX, Mayo JC, et al. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–1146.
  • Favero G, Rodella LF, Reiter RJ, et al. Melatonin and its atheroprotective effects: a review. Mol Cell Endocrinol. 2014;382(2):926–937.
  • Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619.
  • Anjum S, Rahman S, Kaur M, et al. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol. 2011;49(11):2849–2854.
  • Kleszczynski K, Zillikens D, Fischer TW. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (gamma-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J Pineal Res. 2016;61(2):187–197.
  • Kang KW, Lee SJ, Kim SG. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal. 2005;7:1664–1673.
  • Rochette L, Zeller M, Cottin Y, et al. Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes. Trends Endocrinol Metab. 2018;29(2):74–85.
  • Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Deckert-Gaudig T, Bailo E, Tip-Enhanced DV. Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Phys Chem Chem Phys. 2009;11(34):7360–7362.
  • Cheng Z, Arscott LDBallou DP, et al. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in drosophila. Biochemistry. 2007;46(26):7875–7885.
  • Perl A, Hanczko R, Telarico T, et al. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med. 2011;17(7):395–403.
  • Giustarini D, Tsikas D, Colombo G, et al. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: an elephant in the room. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1019:21–28.
  • Blagojević DP. Antioxidant systems in supporting environmental and programmed adaptations to low temperatures. CryoLetters. 2007;28(3):137–150.
  • Xu Q, Lee K-A, Lee S, et al. A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HOCl production. J Am Chem Soc. 2013;135(26):9944–9949.
  • Şener G, Toklu H, Kapucu C, et al. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg Today. 2005;35(1):52–59.
  • Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17.
  • Albendea CD, Gomez-Trullen EM, Fuentes-Broto L, et al. Melatonin reduces lipid and protein oxidative damage in synaptosomes due to aluminium. J Trace Elem Med Biol. 2007;21(4):261–268.
  • Biswas S, Chida AS, Rahman I. Redox modifications of protein–thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006;71(5):551–564.
  • Keynan S, Hirshberg B, Levin-Iaina N, et al. Renal nitric oxide production during the early phase of experimental diabetes mellitus. Kidney Int. 2000;58(2):740–747.
  • Lu -J-J, Fu L, Tang Z, et al. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget. 2016;7(3):2985.
  • Askari H, Rajani SF, Poorebrahim M, et al. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: an introductory review. Pharmacol Res. 2018;129:44–55.
  • Haghi-Aminjan H, Asghari MH, Goharbari MH, et al. A systematic review on potential mechanisms of minocycline in kidney diseases. Pharmacol Rep. 2017;69(4):602–609.
  • Fardid R, Salajegheh A, Mosleh-Shirazi MA, et al. Melatonin ameliorates the production of COX-2, iNOS, and the formation of 8-OHdG in non-targeted lung tissue after pelvic irradiation. Cell J. 2017;19(2):324–331.
  • Jhang -J-J, Cheng Y-T, Ho C-Y, et al. Monosodium urate crystals trigger Nrf2-and heme oxygenase-1-dependent inflammation in THP-1 cells. Cell Mol Immunol. 2015;12(4):424–434.
  • Ahn CB, Jung WK, Park SJ, et al. Gallic acid-g-chitosan modulates inflammatory responses in lps-stimulated raw264.7 cells via NF-kappaB, AP-1, and MAPK pathways. Inflammation. 2016;39(1):366–374.
  • Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci. 2015;8:77.
  • Abdel-Raheem IT, Khedr NF. Renoprotective effects of montelukast, a cysteinyl leukotriene receptor antagonist, against methotrexate-induced kidney damage in rats. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(4):341–353.
  • Armagan I, Bayram D, Candan IA, et al. Effects of pentoxifylline and alpha lipoic acid on methotrexate-induced damage in liver and kidney of rats. Environ Toxicol Pharmacol. 2015;39(3):1122–1131.
  • Moslemi F, Nematbakhsh M, Eshraghi-Jazi F, et al. Inhibition of nitric oxide synthase by l-name promotes cisplatin-induced nephrotoxicity in male rats. ISRN Toxicol. 2013;2013:242345.
  • Uto T, Fujii M, Hou D-X. 6-(Methylsulfinyl) hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochem Pharmacol. 2005;70(8):1211–1221.
  • Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480–481:243–268.
  • Li W, Khor TO, Xu C, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485–1489.
  • Aparicio-Soto M, Alarcon-de-la-Lastra C, Cardeno A, et al. Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br J Pharmacol. 2014;171(1):134–144.
  • Bodaghi-Namileh V, Sepand MR, Omidi A, et al. Acetyl-l-carnitine attenuates arsenic-induced liver injury by abrogation of mitochondrial dysfunction, inflammation, and apoptosis in rats. Environ Toxicol Pharmacol. 2018;58:11–20.
  • Moeini-Nodeh S, Rahimifard M, Baeeri M, et al. Functional Improvement in rats’ pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways. Biol Trace Elem Res. 2017;175(1):146–155.
  • Punnoose EA, Leverson JD, Peale F, et al. Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective antagonist venetoclax in multiple myeloma models. Mol Cancer Ther. 2016;15(5):1132–1144.
  • Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci. 2009;66(8):1326–1336.
  • Gobessi S, Laurenti L, Longo P, et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia. 2009;23(4):686–697.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.
  • Byers T, Nestle M, McTiernan A, et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2002;52(2):92–119.
  • Jemal A, Center MM, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–1907.
  • Bahreyni Toossi MT, Soleymanifard S, Farhood B, et al. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J Cancer Res Ther. 2018;14(3):634–639.
  • Yahyapour R, Motevaseli E, Rezaeyan A, et al. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol. 2018;20(8):975–988.
  • Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol. 2012;2012:465897.
  • Arjumand W, Seth A, Sultana S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in wistar rats. Food Chem Toxicol. 2011;49(9):2013–2021.
  • Bahadar H, Maqbool F, Mostafalou S, et al. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion. Environ Toxicol Pharmacol. 2015;39(3):1161–1169.
  • Zhang B, Shen Q, Chen Y, et al. Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci Rep. 2017;13(7):44239.
  • Qin W, Lu W, Li H, et al. Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J Endocrinol. 2012;214(2):145–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.