337
Views
24
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): drug metabolizing enzymes, transporters, and beyond

, , , , , , & show all
Pages 167-177 | Received 19 Sep 2018, Accepted 21 Dec 2018, Published online: 07 Jan 2019

References

  • Song W, Qiao X, Chen K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal Chem. 2017;89(5):3146–3153.
  • Guo JM, Shang EX, Zhao JL, et al. Data mining and frequency analysis for licorice as a “two-face” herb in Chinese formulae based on Chinese formulae database. Phytomedicine. 2014;21(11):1281–1286.
  • Yang R, Wang LQ, Yuan BC, et al. The pharmacological activities of licorice. Planta Med. 2015;81(18):1654–1669.
  • Teschke R, Wolff A, Frenzel C, et al. Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. World J Gastroenterol. 2015;21(15):4466–4490.
  • Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp and its bioactive compounds. Phytother Res. 2008;22(6):709–724.
  • Hajiaghamohammadi AA, Ziaee A, Samimi R. The efficacy of licorice root extract in decreasing transaminase activities in non-alcoholic fatty liver disease: a randomized controlled clinical trial. Phytother Res. 2012;26(9):1381–1384.
  • Najafi S, Koujan SE, Manifar S, et al. Preventive effect of Glycyrrhiza glabra extract on oral mucositis in patients under head and neck radiotherapy: a randomized clinical trial. J Dent (Tehran). 2017;14(5):267–274.
  • Luis A, Domingues F, Pereira L. Metabolic changes after licorice consumption: A systematic review with meta-analysis and trial sequential analysis of clinical trials. Phytomedicine. 2018;39:17–24.
  • Raveendra KR, Jayachandra; Srinivasa V, Sushma KR, et al. An extract of Glycyrrhiza glabra (gutgard) alleviates symptoms of functional dyspepsia: a randomized, double-blind, placebo-controlled study. Evid-Based Complementary Altern Med. 2012;1–9.
  • Ruetzler K, Fleck M, Nabecker S, et al. A randomized, double-blind comparison of licorice versus sugar-water gargle for prevention of postoperative sore throat and postextubation coughing. Anesth Analg. 2013;117(3):614–621.
  • Wang XY, Zhang H, Chen LL, et al. Liquorice, a unique “guide drug” of traditional Chinese medicine: A review of its role in drug interactions. J Ethnopharmacol. 2013;150(3):781–790.
  • Sun B, Wang XB, Cao RL, et al. NMR-based metabonomics study on the effect of gancao in the attenuation of toxicity in rats induced by fuzi. J Ethnopharmacol. 2016;193:617–626.
  • Yan Y, Zhang AH, Dong H, et al. Toxicity and detoxification effects of herbal caowu via ultra performance liquid chromatography/mass spectrometry metabolomics analyzed using pattern recognition method. Pharmacogn Mag. 2017;13(52):683–692.
  • Shi L, Tang XL, Dang XL, et al. Investigating herb-herb interactions: the potential attenuated toxicity mechanism of the combined use of Glycyrrhizae radix et rhizoma (Gancao) and sophorae flavescentis radix (Kushen). J Ethnopharmacol. 2015;165:243–250.
  • Gu LQ, Wang XF, Liu ZZ, et al. A study of semen strychni-induced renal injury and herb-herb interaction of radix Glycyrrhizae extract and/or rhizoma ligustici extract on the comparative toxicokinetics of strychnine and brucine in rats. Food Chem Toxicol. 2014;68:226–233.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Therapeut. 2013;138(1):103–141.
  • Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell B. 2013;45(6):1121–1132.
  • Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–236.
  • Ma BL, Ma YM. Pharmacokinetic herb-drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev. 2016;48(1):1–26.
  • Mu Y, Zhang JN, Zhang SM, et al. Traditional Chinese medicines Wu Wei Zi (schisandra chinensis baill) and Gan Cao (Glycyrrhiza uralensis fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther. 2006;316(3):1369–1377.
  • Tang JC, Song XH, Zhu M, et al. Study on the pharmacokinetics drug-drug interaction potential of Glycyrrhiza uralensis, a traditional Chinese medicine, with lidocaine in rats. Phytother Res. 2009;23(5):603–607.
  • Hu WY, Li YW, Hou YN, et al. The induction of liver microsomal cytochrome P450 by Glycyrrhiza uralensis and glycyrrhetinic acid in mice. Biomed Environ Sci. 1999;12(1):10–14.
  • Hou YC, Lin SP, Chao PDL. Liquorice reduced cyclosporine bioavailability by activating P-glycoprotein and CYP 3A. Food Chem. 2012;135(4):2307–2312.
  • Paolini M, Pozzetti L, Sapone A, et al. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases. Life Sci. 1998;62(6):571–582.
  • Moon A, Kim SH. Effect of Glycyrrhiza glabra roots and glycyrrhizin on the glucuronidation in rats. Planta Med. 1997;63(2):115–119.
  • Gong H, Li HD, Yan M, et al. Effect of licorice on the induction of phase II metabolizing enzymes and phase III transporters and its possible mechanism. Pharmazie. 2014;69(12):894–897.
  • Liu KH, Kim MJ, Jeon BH, et al. Inhibition of human cytochrome P450 isoforms and NADPH-CYP reductase in vitro by 15 herbal medicines, including Epimedii herba. J Clin Pharm Ther. 2006;31(1):83–91.
  • Tsukamoto S, Aburatani M, Yoshida T, et al. CYP3A4 inhibitors isolated from licorice. Biol Pharm Bull. 2005;28(10):2000–2002.
  • Li GN, Simmler C, Chen LY, et al. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharm Sci. 2017;109:182–190.
  • Pandit S, Ponnusankar S, Bandyopadhyay A, et al. Exploring the possible metabolism mediated interaction of Glycyrrhiza glabra extract with CYP3A4 and CYP2D6. Phytother Res. 2011;25(10):1429–1434.
  • Chen J, Li WC, Gu XL. Optimized extraction, preliminary characterization, and in vitro antioxidant activity of polysaccharides from Glycyrrhiza uralensis fisch. Med Sci Monit. 2017;23:1783–1791.
  • Bai G, Fujiwara K, Tanimori H, et al. Development and application of a sandwich enzyme immunoassay for Glycyrrhizae radix protein (GRP) using monoclonal antibodies. Biol Pharm Bull. 1997;20(12):1224–1228.
  • Khazraei-Moradian S, Ganjalikhani-Hakemi M, Andalib A, et al. The effect of licorice protein fractions on proliferation and apoptosis of gastrointestinal cancer cell lines. Nutr Cancer. 2017;69(2):330–339.
  • Ke LJ, Gao GZ, Shen Y, et al. Encapsulation of aconitine in self-assembled licorice protein nanoparticles reduces the toxicity in vivo. Nanoscale Res Lett. 2015;10:449.
  • Montero L, Ibanez E, Russo M, et al. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection. Anal Chim Acta. 2016;913:145–159.
  • Ploeger B, Mensinga T, Sips A, et al. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling. Drug Metab Rev. 2001;33(2):125–147.
  • Zhu ZH, Tao WW, Li JP, et al. Rapid determination of flavonoids in licorice and comparison of three licorice species. J Sep Sci. 2016;39(3):473–482.
  • Qiao X, Ji S, Yu SW, et al. Identification of key licorice constituents which interact with cytochrome p450: evaluation by LC/MS/MS cocktail assay and metabolic profiling. Aaps J. 2014;16(1):101–113.
  • Hao HQ, Ma QM, Huang C, et al. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm. 2013;444(1–2):77–84.
  • Lin SP, Tsai SY, Hou YC, et al. Glycyrrhizin and licorice significantly affect the pharmacokinetics of methotrexate in rats. J Agr Food Chem. 2009;57(5):1854–1859.
  • Kornievskaya VS, Kruppa AI, Polyakov NE, et al. Effect of glycyrrhizic acid on lappaconitine phototransformation. J Phys Chem B. 2007;111(39):11447–11452.
  • Petrova SS, Schlotgauer AA, Kruppa AI, et al. Self-association of glycyrrhizic acid. Z Phys Chem. 2017;231(4):839–855.
  • Polyakov NE, Khan VK, Taraban MB, et al. Complexation of lappaconitine with glycyrrhizic acid: stability and reactivity studies. J Phys Chem B. 2005;109(51):24526–24530.
  • Polyakov NE, Magyar A, Kispert LD. Photochemical and optical properties of water-soluble xanthophyll antioxidants: aggregation vs complexation. J Phys Chem B. 2013;117(35):10173–10182.
  • Vetrova E, Lekar’ A, Borisenko N. Mass spectrometric analysis of supramolecular complexes of glycyrrhizic acid and simvastatin. Chem Nat Compd. 2017;53(2):304–309.
  • Kong RP, Zhu XY, Meteleva ES, et al. Enhanced solubility and bioavailability of simvastatin by mechanochemically obtained complexes. Int J Pharm. 2017;534(1–2):108–118.
  • Matsuoka K, Miyajima R, Ishida Y, et al. Aggregate formation of glycyrrhizic acid. Colloid Surf A. 2016;500:112–117.
  • Selyutina OY, Apanasenko IE, Kim AV, et al. Spectroscopic and molecular dynamics characterization of glycyrrhizin membrane-modifying activity. Colloid Surf B. 2016;147:459–466.
  • Selyutina OY, Polyakov NE, Korneev DV, et al. Influence of glycyrrhizin on permeability and elasticity of cell membrane: perspectives for drugs delivery. Drug Deliv. 2016;23(3):858–865.
  • Selyutina OY, Apanasenko IE, Shilov AG, et al. Effect of natural polysaccharides and oligosaccharides on the permeability of cell membranes. Russ Chem Bull. 2017;66(1):129–135.
  • Zhao K, Ding M, Cao H, et al. In-vitro metabolism of glycyrrhetinic acid by human and rat liver microsomes and its interactions with six CYP substrates. J Pharm Pharmacol. 2012;64(10):1445–1451.
  • Paolini M, Barillari J, Broccoli M, et al. Effect of liquorice and glycyrrhizin on rat liver carcinogen metabolizing enzymes. Cancer Lett. 1999;145(1–2):35–42.
  • Wang YG, Zhou JM, Ma ZC, et al. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: A possible mechanism for its hepatoprotective property against lithocholic acid-induced injury. Chem Biol Interact. 2012;200(1):11–20.
  • Tu JH, He YJ, Chen Y, et al. Effect of glycyrrhizin on the activity of CYP3A enzyme in humans. Eur J Clin Pharmacol. 2010;66(8):805–810.
  • Tu JH, Hu DL, Dai LL, et al. Effect of glycyrrhizin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes. Xenobiotica. 2010;40(6):393–399.
  • Borisenko SN, Lekar’ AV, Vetrova EV, et al. A mass spectrometry study of the self-association of glycyrrhetinic acid molecules. Russ J Bioorganic Chem. 2016;42(7):716–720.
  • Negishi M, Irie A, Nagata N, et al. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim Biophys Acta. 1991;1066(1):77–82.
  • Sun YQ, Dai CM, Zheng Y, et al. Binding effect of fluorescence labeled glycyrrhetinic acid with GA receptors in hepatocellular carcinoma cells. Life Sci. 2017;188:186–191.
  • Sun YQ, Dai CM, Yin ML, et al. Hepatocellular carcinoma-targeted effect of configurations and groups of glycyrrhetinic acid by evaluation of its derivative-modified liposomes. Int J Nanomed. 2018;13:1621–1632.
  • Chen Q, Chen H, Wang W, et al. Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition. Eur J Pharm Sci. 2017;106:313–327.
  • Zhang C, Liu ZF, Zheng Y, et al. Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo. Small. 2018;14:4.
  • Cai YE, Xu YQ, Chan HF, et al. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol Pharm. 2016;13(3):699–709.
  • Feng RL, Deng PZ, Song ZM, et al. Glycyrrhetinic acid-modified PEG-PCL copolymeric micelles for the delivery of curcumin. React Funct Polym. 2017;111:30–37.
  • Lv QL, Wang GH, Chen SH, et al. In vitro and in vivo inhibitory effects of glycyrrhetinic acid in mice and human cytochrome P450 3A4. Int J Environ Res Public Health. 2016;13:1.
  • Jeong HG, You HJ, Park SJ, et al. Hepatoprotective effects of 18 beta-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol Res. 2002;46(3):221–227.
  • Li AF, Ma NN, Zhao ZJ, et al. Glycyrrhetinic acid might increase the nephrotoxicity of bakuchiol by inhibiting cytochrome P450 isoenzymes. Peerj. 2016;4:e2723.
  • Li HY, Xu W, Su JA, et al. In vitro and in vivo inhibitory effects of glycyrrhetinic acid on cytochrome P450 3A activity. Pharmacology. 2010;86(5–6):287–292.
  • Huang YP, Cao YF, Fang ZZ, et al. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7. Phytother Res. 2013;27(9):1358–1361.
  • Shi XB, Shan LN, Guo B. Comparison of the inhibitory potential of glycyrrhetinic acid and glycyrrhizic acid towards UDP-glucuronosyltransferase (UGT) 2B15. Lat Am J Pharm. 2012;31(8):1196–1198.
  • Wen F, Shi M, Bian J, et al. Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake. Pharm Biol. 2016;54(2):293–302.
  • Nabekura T, Yamaki T, Ueno K, et al. Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemoth Pharm. 2008;62(5):867–873.
  • Peter K, Schinnerl J, Felsinger S, et al. A novel concept for detoxification: complexation between aconitine and liquiritin in a Chinese herbal formula (‘Sini Tang’). J Ethnopharmacol. 2013;149(2):562–569.
  • Guo B, Fan XR, Fang ZZ, et al. Deglycosylation of liquiritin strongly enhances its inhibitory potential towards UDP-glucuronosyltransferase (UGT) isoforms. Phytother Res. 2013;27(8):1232–1236.
  • Sun S, Chen QS, Ge JY, et al. Pharmacokinetic interaction of aconitine, liquiritin and 6-gingerol in a traditional Chinese herbal formula, Sini decoction. Xenobiotica. 2018;48(1):45–52.
  • Pan X, Kong LD, Zhang Y, et al. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from sinofranchetia chinensis. Acta Pharmacol Sin. 2000;21(10):949–953.
  • Kim YW, Kang HE, Lee MG, et al. Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes. Am J Physiol Gastr Liver Physiol. 2009;296(2):G372–G381.
  • Gong H, Zhang BK, Yan M, et al. A protective mechanism of licorice (Glycyrrhiza uralensis): isoliquiritigenin stimulates detoxification system via Nrf2 activation. J Ethnopharmacol. 2015;162:134–139.
  • Kent UM, Aviram M, Rosenblat M, et al. The licorice root derived isoflavan glabridin inhibits the activities of human cytochrome P450S 3A4, 2B6, and 2C9. Drug Metab Dispos. 2002;30(6):709–715.
  • Cao J, Chen X, Liang J, et al. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra. Drug Metab Dispos. 2007;35(4):539–553.
  • He W, Wu JJ, Ning J, et al. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice. Toxicol in Vitro. 2015;29(7):1569–1576.
  • Xin H, Qi XY, Wu JJ, et al. Assessment of the inhibition potential of licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol. 2016;90:112–122.
  • Kim SJ, Kim SJ, Hong M, et al. Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9. Xenobiotica. 2016;46(10):857–861.
  • Singhuber J, Zhu M, Prinz S, et al. Aconitum in traditional Chinese medicine-A valuable drug or an unpredictable risk? J Ethnopharmacol. 2009;126(1):18–30.
  • Zhang JM, Li L, Gao F, et al. Chemical ingredient analysis of sediments from both single radix aconiti lateralis decoction and radix aconiti lateralis - radix Glycyrrhizae decoction by HPLC-MS]. Yao Xue Xue Bao. 2012;47(11):1527–1533.
  • Shen H, Wu J, Di LQ, et al. Enhancement by Glycyrrhizae radix of hepatic metabolism of hypaconitine, a major bioactive and toxic component of aconiti laterlis radix, evaluated by HPLC-TQ-MS/MS analysis. Biomed Chromatogr. 2013;27(5):556–562.
  • Han TJ, Liu Y, Pi ZF, et al. Absorption of hypaconitine and P-glycoprotein-mediated drug-hypaconitine interactions by caco-2 human intestinal cell monolayers. J Liq Chromatogr Related Technol. 2013;36(9):1207–1220.
  • Brinker AM, Ma J, Lipsky PE, et al. Medicinal chemistry and pharmacology of genus tripterygium (celastraceae). Phytochemistry. 2007;68(6):732–766.
  • Zhang C, Sun PP, Guo HT, et al. Safety profiles of tripterygium wilfordii hook F: a systematic review and meta-analysis. Front Pharmacol. 2016;7:402.
  • Li YS, Tong PJ, Ma HZ. [Toxicity attenuation and efficacy potentiation effect of liquorice on treatment of rheumatoid arthritis with Tripterygium wilfordii]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006;26(12):1117–1119.
  • Li XJY, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014;155(1):67–79.
  • Yang HJ, Chen D, Cui QZC, et al. Celastrol, a triterpene extracted from the Chinese “thunder of god vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006;66(9):4758–4765.
  • Cao LJ, Hou ZY, Li HD, et al. The ethanol extract of licorice (Glycyrrhiza uralensis) protects against triptolide-induced oxidative stress through activation of Nrf2. Evid-Based Complementary Altern Med. 2017.
  • Tai T, Huang X, Su YW, et al. Glycyrrhizin accelerates the metabolism of triptolide through induction of CYP3A in rats. J Ethnopharmacol. 2014;152(2):358–363.
  • Li ZH, Yan M, Cao LJ, et al. Glycyrrhetinic acid accelerates the clearance of triptolide through P-gp in vitro. Phytother Res. 2017;31(7):1090–1096.
  • Hou ZY, Chen L, Fang PF, et al. Mechanisms of triptolide-induced hepatotoxicity and protective effect of combined use of isoliquiritigenin: possible roles of Nrf2 and hepatic transporters. Front Pharmacol. 2018;9:226.
  • Yan GK, Zhang HH, Wang W, et al. Investigation of the influence of glycyrrhizin on the pharmacokinetics of celastrol in rats using LC-MS and its potential mechanism. Xenobiotica. 2017;47(7):607–613.
  • Tang J, Feng YB, Tsao S, et al. Berberine and coptidis rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations. J ethnopharmacol. 2009;126(1):5–17.
  • Ma BL, Ma YM, Shi R, et al. Identification of the toxic constituents in rhizoma coptidis. J ethnopharmacol. 2010;128(2):357–364.
  • Ma BL, Ma YM, Gao CL, et al. Lipopolysaccharide increased the acute toxicity of the rhizoma coptidis extract in mice by increasing the systemic exposure to rhizoma coptidis alkaloids. J Ethnopharmacol. 2011;138(1):169–174.
  • Li Q, Yang Y, Zhou T, et al. A compositive strategy to study the pharmacokinetics of TCMs: taking coptidis rhizoma, and coptidis rhizoma-Glycyrrhizae radix et rhizoma as examples. Molecules. 2018;23:8.
  • Pan GY, Wang GJ, Liu XD, et al. The involvement of P-glycoprotein in berberine absorption. Toxicol Pharmacol. 2002;91(4):193–197.
  • Liu YT, Hao HP, Xie HG, et al. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos. 2010;38(10):1779–1784.
  • Yang Y, Kang N, Xia H, et al. Metabolites of protoberberine alkaloids in human urine following oral administration of coptidis rhizoma decoction. Planta Med. 2010;76(16):1859–1863.
  • An R, Zhang H, Zhang YZ, et al. Intestinal absorption of different combinations of active compounds from gegenqinlian decoction by rat single pass intestinal perfusion in situ. Yao Xue Xue Bao. 2012;47(12):1696–1702.
  • Qiao X, Wang Q, Wang S, et al. A 42-markers pharmacokinetic study reveals interactions of berberine and glycyrrhizic acid in the anti-diabetic Chinese medicine formula gegen-qinlian decoction. Front Pharmacol. 2018;9:622.
  • Li SJ, Wang F, Zhao JJ, et al. Study on the interactions between rhizoma coptidis and radix Glycyrrhiza. Spectrosc Spect Anal. 2007;27(4):730–734.
  • Li Z, Liu T, Liao J, et al. Deciphering chemical interactions between glycyrrhizae radix and coptidis rhizoma by liquid chromatography with transformed multiple reaction monitoring mass spectrometry. J Sep Sci. 2017;40(6):1254–1265.
  • Shimada S, Arai T, Tamaoka A, et al. Liquorice-induced hypokalaemia in patients treated with yokukansan preparations: identification of the risk factors in a retrospective cohort study. Bmj Open. 2017;7:6.
  • Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological effects of Glycyrrhiza glabra (licorice): a review. Phytother Res. 2017;31(11):1635–1650.
  • Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol. 2006;46(3):167–192.
  • Cantelliforti G, Maffei F, Hrelia P, et al. Interaction of licorice on glycyrrhizin pharmacokinetics. Environ Health Perspect. 1994;102:65–68.
  • Qiao X, Ye M, Xiang C, et al. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: a pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J Chromatogr A. 2012;1258:84–93.
  • Wang Z, Nishioka M, Kurosaki Y, et al. Gastrointestinal absorption characteristics of glycyrrhizin from Glycyrrhiza extract. Biol Pharm Bull. 1995;18(9):1238–1241.
  • Shen L, Hu RW, Lin X, et al. Pharmacokinetics of characteristic effective ingredients from individual and combination shaoyao and gancao treatement in rats using HPLC fingerprinting. Eur J Drug Metab Pharmacokine. 2012;37(2):133–140.
  • He R, Xu YS, Peng JJ, et al. The effects of 18 beta-glycyrrhetinic acid and glycyrrhizin on intestinal absorption of paeoniflorin using the everted rat gut sac model. J Nat Med. 2017;71(1):198–207.
  • Wang SN, Sun LJ, Gu LQ, et al. The comparative pharmacokinetics of four bioactive ingredients after administration of ramulus cinnamomi-radix Glycyrrhizae herb pair extract, ramulus cinnamomi extract and radix Glycyrrhizae extract. Biomed Chromatogr. 2016;30(8):1270–1277.
  • Zhang W, Di LQ, Li JS, et al. The effects of Glycyrrhizae uralenis and its major bioactive components on pharmacokinetics of daphnetin in cortex daphnes in rats. J Ethnopharmacol. 2014;154(3):584–592.
  • Shan JJ, Zou JS, Xie T, et al. Effects of gancao on pharmacokinetic profiles of platycodin D and deapio-platycodin D in jiegeng. J Ethnopharmacol. 2015;170:50–56.
  • Shon JH, Park JY, Kim KA, et al. Effect of licorice (radix Glycyrrhizae) on the pharmacokinetics (PK) and pharmacodynamics (PD) of midazolam in healthy subjects. Clin Pharmacol Ther. 2001;69(2):P78–P78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.