513
Views
10
CrossRef citations to date
0
Altmetric
Review

Comparative and quantitative assessment on statin efficacy and safety: insights into inter-statin and inter-individual variability via dose- and exposure-response relationships

, &
Pages 897-911 | Received 21 Jul 2019, Accepted 14 Oct 2019, Published online: 07 Nov 2019

References

  • Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;73:e285–e350.
  • Jacobson TA. Statin safety: lessons from new drug applications for marketed statins. Am J Cardiol. 2006;97:44C–51C.
  • Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112:71–105.
  • Mach F, Ray KK, Wiklund O, et al. Adverse effects of statin therapy: perception vs. the evidence - focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur Heart J. 2018;39:2526–2539.
  • Stroes ES, Thompson PD, Corsini A, et al. Statin-associated muscle symptoms: impact on statin therapy-European atherosclerosis society consensus panel statement on assessment, aetiology and management. Eur Heart J. 2015;36:1012–1022.
  • Jamal SM, Eisenberg MJ, Christopoulos S. Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am Heart J. 2004;147:956–965.
  • Shitara Y, Maeda K, Ikejiri K, et al. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34:45–78.
  • Chu X, Korzekwa K, Elsby R, et al. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin Pharmacol Ther. 2013;94:126–141.
  • Japanese package insert for atorvastatin (LIPITOR® tablet). cited 2019 Jul 21 Available from: http://www.info.pmda.go.jp/go/pack/2189015F1023_1_38/?view=frame&style=SGML&lang=ja
  • Japanese package insert for fluvastatin (LOCHOL® tablet). cited 2019 Jul 21 Available from: http://www.info.pmda.go.jp/go/pack/2189012F1020_5_04/?view=frame&style=SGML&lang=ja
  • Japanese package insert for pitavastatin (LIVALO tablet). cited 2019 Jul 21 Available from: http://www.info.pmda.go.jp/go/pack/2189016F1028_1_35/?view=frame&style=SGML&lang=ja
  • Japanese package insert for rosuvastatin (CRESTOR® tablet). cited 2019 Jul 21 Available from: http://www.info.pmda.go.jp/go/pack/2189017F1022_1_24/?view=frame&style=SGML&lang=ja
  • Japanese package insert for pravastatin (MEVALOTIN® tablet). cited 2019 Jul 21 Available from: http://www.info.pmda.go.jp/go/pack/2189010C1032_2_13/?view=frame&style=SGML&lang=ja
  • Japanese package insert for simvastatin (LIPOVAS® tablet). cited 2019 Jul 21 Available from: http://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/170050_2189011F1025_2_16
  • Kunze A, Poller B, Huwyler J, et al. Application of the extended clearance concept classification system (ECCCS) to predict the victim drug-drug interaction potential of statins. Drug Metab Pers Ther. 2015;30:175–188.
  • Muck W. Clinical pharmacokinetics of cerivastatin. Clin Pharmacokinet. 2000;39:99–116.
  • US prescribing information for fluvastatin (LESCOL®). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020261s052,021192s026lbl.pdf
  • US prescribing information for pravastatin (PRAVACHOL®). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/019898s066lbl.pdf
  • US prescribing information for atorvastatin (LIPITOR®). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020702s073lbl.pdf
  • US prescribing information for pitavastatin (LIVALO®). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022363s011lbl.pdf
  • US prescribing information for rosuvastatin (CRESTOR). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021366s038lbl.pdf
  • Watanabe T, Kusuhara H, Sugiyama Y. Application of physiologically based pharmacokinetic modeling and clearance concept to drugs showing transporter-mediated distribution and clearance in humans. J Pharmacokinet Pharmacodyn. 2010;37:575–590.
  • Yao Y, Toshimoto K, Kim SJ, et al. Quantitative analysis of complex drug-drug interactions between cerivastatin and metabolism/transport inhibitors using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2018;46:924–933.
  • Yoshikado T, Yoshida K, Kotani N, et al. Quantitative analyses of hepatic OATP-mediated interactions between statins and inhibitors using PBPK modeling with a parameter optimization method. Clin Pharmacol Ther. 2016;100:513–523.
  • Yoshida K, Maeda K, Sugiyama Y. Transporter-mediated drug–drug interactions involving OATP substrates: predictions based on in vitro inhibition studies. Clin Pharmacol Ther. 2012;91:1053–1064.
  • Neuvonen PJ. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Invest Drugs. 2010;11:323–332.
  • Backman JT, Luurila H, Neuvonen M, et al. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin Pharmacol Ther. 2005;78:154–167.
  • Backman JT, Kyrklund C, Neuvonen M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther. 2002;72:685–691.
  • Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on cerivastatin pharmacokinetics. Eur J Clin Pharmacol. 1999;54:851–855.
  • Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther. 2000;68:391–400.
  • Muck W, Ochmann K, Rohde G, et al. Influence of erythromycin pre- and co-treatment on single-dose pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Eur J Clin Pharmacol. 1998;53:469–473.
  • Kantola T, Backman JT, Niemi M, et al. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol. 2000;56:225–229.
  • Backman JT, Kyrklund C, Kivisto KT, et al. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther. 2000;68:122–129.
  • Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther. 2006;79:350–361.
  • Kyrklund C, Backman JT, Kivisto KT, et al. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther. 2000;68:592–597.
  • Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther. 1998;63:332–341.
  • Ucar M, Neuvonen M, Luurila H, et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol. 2004;59:879–882.
  • Fujino H, Kojima J, Yamada Y, et al. Studies on the metabolic fate of NK-104, a new inhibitor of HMG-CoA reductase (4): interspecies variation in laboratory animals and humans. Xenobio Metabol Dispos. 1999;14:79–91.
  • Martin PD, Warwick MJ, Dane AL, et al. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther. 2003;25:2822–2835.
  • Ishigami MYY. Japanese document. Progress Med. 1998;18:972–980.
  • Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos. 2002;30:505–512.
  • Schirris TJ, Ritschel T, Bilos A, et al. Statin lactonization by Uridine 5ʹ-Diphospho-glucuronosyltransferases (UGTs). Mol Pharm. 2015;12:4048–4055.
  • Riedmaier S, Klein K, Hofmann U, et al. UDP-glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo. Clin Pharmacol Ther. 2010;87:65–73.
  • Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–181.
  • Mori D, Kashihara Y, Yoshikado T, et al. Effect of OATP1B1 genotypes on plasma concentrations of endogenous OATP1B1 substrates and drugs, and their association in healthy volunteers. Drug Metab Pharmacokinet. 2019;34:78–86.
  • Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther. 2006;80:356–366.
  • Zhou Q, Ruan ZR, Yuan H, et al. CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers. Arzneimittelforschung. 2012;62:519–524.
  • Takehara I, Yoshikado T, Ishigame K, et al. Comparative study of the dose-dependence of OATP1B inhibition by rifampicin using probe drugs and endogenous substrates in healthy volunteers. Pharm Res. 2018;35:138.
  • Tomita Y, Maeda K, Sugiyama Y. Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: a kinetic consideration of its mechanism. Clin Pharmacol Ther. 2013;94:37–51.
  • Birmingham BK, Bujac SR, Elsby R, et al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur J Clin Pharmacol. 2015;71:341–355.
  • Keskitalo JE, Zolk O, Fromm MF, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86:197–203.
  • Wan Z, Wang G, Li T, et al. Marked alteration of rosuvastatin pharmacokinetics in healthy Chinese with ABCG2 34G>A and 421C>A homozygote or compound heterozygote. J Pharmacol Exp Ther. 2015;354:310–315.
  • Zhang W, Yu BN, He YJ, et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta. 2006;373:99–103.
  • Choi HY, Bae KS, Cho SH, et al. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet Genomics. 2015;25:595–608.
  • Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102:2953–2994.
  • Aoyama T, Omori T, Watabe S, et al. Pharmacokinetic/pharmacodynamic modeling and simulation of rosuvastatin using an extension of the indirect response model by incorporating a circadian rhythm. Biol Pharm Bull. 2010;33:1082–1087.
  • Kim J, Ahn BJ, Chae HS, et al. A population pharmacokinetic-pharmacodynamic model for simvastatin that predicts low-density lipoprotein-cholesterol reduction in patients with primary hyperlipidaemia. Basic Clin Pharmacol Toxicol. 2011;109:156–163.
  • Sharma A, Jusko WJ. Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol. 1998;45:229–239.
  • Tsamandouras N, Dickinson G, Guo Y, et al. Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population PBPK approach. Pharm Res. 2015;32:1864–1883.
  • Watanabe T, Kusuhara H, Maeda K, et al. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther. 2009;328:652–662.
  • Kaneko K, Tanaka M, Ishii A, et al. A Clinical quantitative evaluation of hepatobiliary transport of [(11)C]dehydropravastatin in humans using positron emission tomography. Drug Metab Dispos. 2018;46:719–728.
  • Nordell P, Winiwarter S, Hilgendorf C. Resolving the distribution-metabolism interplay of eight OATP substrates in the standard clearance assay with suspended human cryopreserved hepatocytes. Mol Pharm. 2013;10:4443–4451.
  • Izumi S, Nozaki Y, Komori T, et al. Comparison of the predictability of human hepatic clearance for organic anion transporting polypeptide substrate drugs between different in vitro-in vivo extrapolation approaches. J Pharm Sci. 2017;106:2678–2687.
  • Riede J, Camenisch G, Huwyler J, et al. Current in vitro methods to determine hepatic kpuu: a comparison of their usefulness and limitations. J Pharm Sci. 2017;106:2805–2814.
  • Yoshikado T, Toshimoto K, Nakada T, et al. Comparison of methods for estimating unbound intracellular-to-medium concentration ratios in rat and human hepatocytes using statins. Drug Metab Dispos. 2017;45:779–789.
  • Riccardi K, Lin J, Li Z, et al. Novel method to predict in vivo liver-to-plasma Kpuu for OATP substrates using suspension hepatocytes. Drug Metab Dispos. 2017;45:576–580.
  • Knauer MJ, Urquhart BL, Meyer Zu Schwabedissen HE, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106:297–306.
  • Sirvent P, Bordenave S, Vermaelen M, et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem Biophys Res Commun. 2005;338:1426–1434.
  • Sidaway J, Wang Y, Marsden AM, et al. Statin-induced myopathy in the rat: relationship between systemic exposure, muscle exposure and myopathy. Xenobiotica. 2009;39:90–98.
  • Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet. 1997;32:403–425.
  • Knopp RH. Drug treatment of lipid disorders. N Engl J Med. 1999;341:498–511.
  • Leitersdorf E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Suppl. 2001;3:E17–E23.
  • Mandema JW, Hermann D, Wang W, et al. Model-based development of gemcabene, a new lipid-altering agent. Aaps J. 2005;7:E513–E522.
  • Du Souich P, Roederer G, Dufour R. Myotoxicity of statins: mechanism of action. Pharmacol Ther. 2017;175:1–16.
  • Kobayashi M, Chisaki I, Narumi K, et al. Association between risk of myopathy and cholesterol-lowering effect: a comparison of all statins. Life Sci. 2008;82:969–975.
  • Kashani A, Phillips CO, Foody JM, et al. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation. 2006;114:2788–2797.
  • McClure DL, Valuck RJ, Glanz M, et al. Systematic review and meta-analysis of clinically relevant adverse events from HMG CoA reductase inhibitor trials worldwide from 1982 to present. Pharmacoepidemiol Drug Saf. 2007;16:132–143.
  • Pedro-Botet J, Climent E, Benaiges D. Muscle and statins: from toxicity to the nocebo effect. Expert Opin Drug Saf. 2019;18:573–579.
  • Center for drug evaluation and research. Clinical pharmacology and biopharmaceutics reviews for rosuvastatin (Crestor). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-366_Crestor_BioPharmr.pdf
  • Center for drug evaluation and research. Clinical pharmacology and biopharmaceutics reviews for pitavastatin (Livalo tablets). cited 2019 Jul 21 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022363s000_ClinPharmR_P1.pdf
  • Postmus I, Trompet S, Deshmukh HA, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.
  • Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res. 2019;124:328–350.
  • Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92:112–117.
  • Hou Q, Li S, Li L, et al. Association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk: a meta-analysis of case-control studies. Medicine (Baltimore). 2015;94:e1268.
  • Xiang Q, Chen SQ, Ma LY, et al. Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J. 2018;18:721–729.
  • Law M, Rudnicka AR. Statin safety: a systematic review. Am J Cardiol. 2006;97:52C–60C.
  • Kim SJ, Yoshikado T, Ieiri I, et al. Clarification of the mechanism of clopidogrel-mediated drug-drug interaction in a clinical cassette small-dose study and its prediction based on in vitro information. Drug Metab Dispos. 2016;44:1622–1632.
  • Floyd JS, Kaspera R, Marciante KD, et al. A screening study of drug-drug interactions in cerivastatin users: an adverse effect of clopidogrel. Clin Pharmacol Ther. 2012;91:896–904.
  • Dai R, Feng J, Wang Y, et al. Association between SLCO1B1 521 TC and 388 AG polymorphisms and statins effectiveness: a meta-analysis. J Atheroscler Thromb. 2015;22:796–815.
  • Dou Y, Zhu X, Wang Q, et al. Meta-analysis of the SLCO1B1 c.521T>C variant reveals slight influence on the lipid-lowering efficacy of statins. Ann Lab Med. 2015;35:329–335.
  • Chasman DI, Giulianini F, MacFadyen J, et al. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5:257–264.
  • Tomlinson B, Hu M, Lee VW, et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther. 2010;87:558–562.
  • Futatsugi A, Toshimoto K, Yoshikado T, et al. Evaluation of alteration in hepatic and intestinal BCRP function in vivo from ABCG2 c.421C>A polymorphism based on PBPK analysis of rosuvastatin. Drug Metab Dispos. 2018;46:749–757.
  • Ieiri I, Suwannakul S, Maeda K, et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2007;82:541–547.
  • Pasanen MK, Fredrikson H, Neuvonen PJ, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82:726–733.
  • Polak S, Tylutki Z, Holbrook M, et al. Better prediction of the local concentration-effect relationship: the role of physiologically based pharmacokinetics and quantitative systems pharmacology and toxicology in the evolution of model-informed drug discovery and development. Drug Discov Today. 2019;24:1344–1354.
  • Wang W, Zhou H. Pharmacological considerations for predicting PK/PD at the site of action for therapeutic proteins. Drug Discov Today Technol. 2016;21–22:35–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.