1,093
Views
32
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models

, ORCID Icon &
Pages 1005-1019 | Received 08 Aug 2019, Accepted 02 Dec 2019, Published online: 10 Dec 2019

References

  • Lahoz A, Gombau L, Donato MT, et al. In vitro ADME medium/high-throughput screening in drug preclinical development. Mini Rev Med Chem. 2006;6(9):1053–1062.
  • Sung JH, Shuler ML. In vitro microscale systems for systematic drug toxicity study. Bioprocess Biosyst Eng. 2010;33(1):5–19.
  • Dingemanse J, Appel-Dingemanse S. Integrated pharmacokinetics and pharmacodynamics in drug development. Clin Pharmacokinet. 2007;46(9):713–737.
  • Lee JB, Sung JH. Organ‐on‐a‐chip technology and microfluidic whole‐body models for pharmacokinetic drug toxicity screening. Biotechnol J. 2013;8(11):1258–1266.
  • Lee SH, Sung JH. Organ‐on‐a‐chip technology for reproducing multiorgan physiology. Adv Healthc Mater. 2018;7(2):1700419.
  • Agoram BM, Martin SW, van der Graaf PH. The role of mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modelling in translational research of biologics. Drug Discov Today. 2007;12(23–24):1018–1024.
  • Wang YI, Oleaga C, Long CJ, et al. Self-contained, low-cost body-on-a-chip systems for drug development. Exp Biol Med. 2017;242(17):1701–1713.
  • Esch M, King T, Shuler M. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng. 2011;13:55–72.
  • Polini A, Prodanov L, Bhise NS, et al. Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov. 2014;9(4):335–352.
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711.
  • Holmes A, Bonner F, Jones D. Assessing drug safety in human tissues—what are the barriers? Nat Rev Drug Discov. 2015;14(8):585.
  • Huh D, Torisawa Y-S, Hamilton GA, et al. Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012;12(12):2156–2164.
  • Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov. 2004;3(5):417.
  • Wagner I, Materne E-M, Brincker S, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip. 2013;13(18):3538–3547.
  • Caplin JD, Granados NG, James MR, et al. Microfluidic organ‐on‐a‐chip technology for advancement of drug development and toxicology. Adv Healthc Mater. 2015;4(10):1426–1450.
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760.
  • Sung JH, Esch MB, Shuler ML. Integration of in silico and in vitro platforms for pharmacokinetic–pharmacodynamic modeling. Expert Opin Drug Metab Toxicol. 2010;6(9):1063–1081.
  • Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol. 2002;14(5):633–640.
  • Choucha‐Snouber L, Aninat C, Grsicom L, et al. Investigation of ifosfamide nephrotoxicity induced in a liver–kidney co‐culture biochip. Biotechnol Bioeng. 2013;110(2):597–608.
  • Sung JH, Shuler ML. Microtechnology for mimicking in vivo tissue environment. Ann Biomed Eng. 2012;40(6):1289–1300.
  • Lee SH, Lim JH, Park J, et al. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens Bioelectron. 2015;71:179–185.
  • Lee SH, Oh EH, Park TH. Cell-based microfluidic platform for mimicking human olfactory system. Biosens Bioelectron. 2015;74:554–561.
  • Lee SH, Rhee H-W, van Noort D, et al. Microfluidic bead-based sensing platform for monitoring kinase activity. Biosens Bioelectron. 2014;57:1–9.
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature. 2006;442(7101):403.
  • Imura Y, Asano Y, Sato K, et al. A microfluidic system to evaluate intestinal absorption. Anal Sci. 2009;25(12):1403–1407.
  • Lee SH, Ha SK, Choi I, et al. Microtechnology‐based organ systems and whole‐body models for drug screening. Biotechnol J. 2016;11(6):746–756.
  • Abbott A. Biology’s new dimension. Nature. 2003;424(6951):870–872.
  • Yum K, Hong SG, Healy KE, et al. Physiologically relevant organs on chips. Biotechnol J. 2014;9(1):16–27.
  • Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials. 2007;28(34):5087–5092.
  • Sung JH, Esch MB, Prot J-M, et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip. 2013;13(7):1201–1212.
  • Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip. 2010;10(4):446–455.
  • Esch MB, Sung JH, Shuler ML. Promises, challenges and future directions of μCCAs. J Biotechnol. 2010;148(1):64–69.
  • Mahler GJ, Esch MB, Glahn RP, et al. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng. 2009;104(1):193–205.
  • Lampen A, Bader A, Bestmann T, et al. Catalytic activities, protein-and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. Xenobiotica. 1998;28(5):429–441.
  • Lasker J, Rickert DE. Absorption and glucuronylation of diethylstilbestrol by the rat small intestine. Xenobiotica. 1978;8(11):665–672.
  • Johnson BM, Charman WN, Porter CJ. The impact of P‐glycoprotein efflux on enterocyte residence time and enterocyte‐based metabolism of verapamil. J Pharm Pharmacol. 2001;53(12):1611–1619.
  • Kaplan SA, Cotler S. Use of cannulated everted intestinal sac for serial sampling as a drug absorbability (permeability) screen. J Pharm Sci. 1972;61(9):1361–1365.
  • Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285(3):1104–1112.
  • Brandon EF, Raap CD, Meijerman I, et al. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–246.
  • Reis JM, Sinko B, Serra CHR. Parallel artificial membrane permeability assay (PAMPA)-is it better than Caco-2 for human passive permeability prediction? Mini Rev Med Chem. 2010;10(11):1071–1076.
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46(1–3):27–43.
  • Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111.
  • Lee HJ. Protein drug oral delivery: the recent progress. Arch Pharm Res. 2002;25(5):572.
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(2):736–749.
  • van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol. 2005;1(2):175–185.
  • Sun H, Chow EC, Liu S, et al. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol. 2008;4(4):395–411.
  • Esch MB, Sung JH, Yang J, et al. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’devices. Biomed Microdevices. 2012;14(5):895–906.
  • Wang L, Murthy SK, Fowle WH, et al. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype. Biomaterials. 2009;30(36):6825–6834.
  • Sung JH, Yu J, Luo D, et al. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 2011;11(3):389–392.
  • Yu J, Peng S, Luo D, et al. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol Bioeng. 2012;109(9):2173–2178.
  • Wang L, Murthy SK, Barabino GA, et al. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials. 2010;31(29):7586–7598.
  • Koppes AN, Kamath M, Pfluger CA, et al. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C. Biofabrication. 2016;8(3):035011.
  • Wang Y, Ahmad AA, Sims CE, et al. In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab Chip. 2014;14(9):1622–1631.
  • Mochel JP, Jergens AE, Kingsbury D, et al. Intestinal stem cells to advance drug development, precision, and regenerative medicine: a paradigm shift in translational research. Aaps J. 2018;20(1):17.
  • Yin X, Mead BE, Safaee H, et al. Engineering stem cell organoids. Cell Stem cell. 2016;18(1):25–38.
  • Dotti I, Salas A. Potential use of human stem cell–derived intestinal organoids to study inflammatory bowel diseases. Inflamm Bowel Dis. 2018;24(12):2501–2509.
  • Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262.
  • Rahmani S, Breyner NM, Su H-M, et al. Intestinal organoids: a new paradigm for engineering intestinal epithelium in vitro. Biomaterials. 2018;194:195–214.
  • Wang Y, Kim R, Gunasekara DB, et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell Mol Gastroenterol Hepatol. 2018;5(2):113–130.
  • Wang Y, Gunasekara DB, Reed MI, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials. 2017;128:44–55.
  • Yeon JH, Park J-K. Drug permeability assay using microhole-trapped cells in a microfluidic device. Anal Chem. 2009;81(5):1944–1951.
  • Kimura H, Yamamoto T, Sakai H, et al. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8(5):741–746.
  • Chi M, Yi B, Oh S, et al. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices. 2015;17(3):58.
  • Kim HJ, Huh D, Hamilton G, et al. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–2174.
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol. 2013;5(9):1130–1140.
  • Villenave R, Wales SQ, Hamkins-Indik T, et al. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS One. 2017;12(2):e0169412.
  • Shim K-Y, Lee D, Han J, et al. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices. 2017;19(2):37.
  • Kim SH, Lee JW, Choi I, et al. A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption. J Nanosci Nanotechnol. 2013;13(11):7220–7228.
  • Kasendra M, Tovaglieri A, Sontheimer-Phelps A, et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep. 2018;8(1):2871.
  • Workman MJ, Gleeson JP, Troisi EJ, et al. Enhanced utilization of induced pluripotent stem cell–derived human intestinal organoids using microengineered chips. Cell Mol Gastroenterol Hepatol. 2018;5(4):669–677. e2.
  • Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.
  • Sadabad MS, Von Martels JZ, Khan MT, et al. A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Sci Rep. 2015;5:17906.
  • Shah P, Fritz JV, Glaab E, et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat Commun. 2016;7:11535.
  • Kim J, Hegde M, Jayaraman A. Co-culture of epithelial cells and bacteria for investigating host–pathogen interactions. Lab Chip. 2010;10(1):43–50.
  • Kim SH, Chi M, Yi B, et al. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol. 2014;6(12):1122–1131.
  • Costello CM, Sorna RM, Goh Y-L, et al. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm. 2014;11(7):2030–2039.
  • Kim HJ, Li H, Collins JJ, et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Nat Acad Sci. 2016;113(1):E7–E15.
  • Choi SH, Fukuda O, Sakoda A, et al. Enhanced cytochrome P450 capacities of Caco-2 and Hep G2 cells in new coculture system under the static and perfused conditions: evidence for possible organ-to-organ interactions against exogenous stimuli. Mater Sci Eng C. 2004;24(3):333–339.
  • Bricks T, Paullier P, Legendre A, et al. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol in Vitro. 2014;28(5):885–895.
  • Prescott L. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. 1980;10(S2):291S–298S.
  • Prot JM, Aninat C, Griscom L, et al. Improvement of HepG2/C3a cell functions in a microfluidic biochip. Biotechnol Bioeng. 2011;108(7):1704–1715.
  • Prot J-M, Videau O, Brochot C, et al. A cocktail of metabolic probes demonstrates the relevance of primary human hepatocyte cultures in a microfluidic biochip for pharmaceutical drug screening. Int J Pharm. 2011;408(1–2):67–75.
  • Choe A, Ha SK, Choi I, et al. Microfluidic gut-liver chip for reproducing the first pass metabolism. Biomed Microdevices. 2017;19(1):4.
  • Lee DW, Ha SK, Choi I, et al. 3D gut-liver chip with a PK model for prediction of first-pass metabolism. Biomed Microdevices. 2017;19(4):100.
  • Lee SY, Sung JH. Gut–liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol Bioeng. 2018;115(11):2817–2827.
  • Maschmeyer I, Hasenberg T, Jaenicke A, et al. Chip-based human liver–intestine and liver–skin co-cultures–A first step toward systemic repeated dose substance testing in vitro. Eur J Pharm Biopharm. 2015;95:77–87.
  • Esch MB, Ueno H, Applegate DR, et al. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip. 2016;16(14):2719–2729.
  • Lee S, Sung J. Microtechnology-based multi-organ models. Bioengineering. 2017;4(2):46.
  • Tsamandouras N, Chen WLK, Edington CD, et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. Aaps J. 2017;19(5):1499–1512.
  • van Midwoud PM, Merema MT, Verpoorte E, et al. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip. 2010;10(20):2778–2786.
  • Imura Y, Sato K, Yoshimura E. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal Chem. 2010;82(24):9983–9988.
  • Imura Y, Yoshimura E, Sato K. Micro total bioassay system for oral drugs: evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Anal Sci. 2012;28(3):197.
  • Jie M, Li H-F, Lin L, et al. Integrated microfluidic system for cell co-culture and simulation of drug metabolism. RSC Adv. 2016;6(59):54564–54572.
  • Maschmeyer I, Lorenz AK, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15(12):2688–2699.
  • Satoh T, Sugiura S, Shin K, et al. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip. 2018;18(1):115–125.
  • Ouattara DA, Choi S-H, Sakai Y, et al. Kinetic modelling of in vitro cell-based assays to characterize non-specific bindings and ADME processes in a static and a perfused fluidic system. Toxicol Lett. 2011;205(3):310–319.
  • Prot JM, Maciel L, Bricks T, et al. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol Bioeng. 2014;111(10):2027–2040.
  • Bricks T, Hamon J, Fleury MJ, et al. Investigation of omeprazole and phenacetin first‐pass metabolism in humans using a microscale bioreactor and pharmacokinetic models. Biopharm Drug Dispos. 2015;36(5):275–293.
  • Aarons L. Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. Br J Clin Pharmacol. 2005;60(6):581–583.
  • Miller PG, Shuler ML. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng. 2016;113(10):2213–2227.
  • Sung JH, Dhiman A, Shuler ML. A combined pharmacokinetic–pharmacodynamic (PK–PD) model for tumor growth in the rat with UFT administration. J Pharm Sci. 2009;98(5):1885–1904.
  • Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–518.
  • Holford N. Pharmacodynamic principles and the time course of delayed and cumulative drug effects. Transl Clin Pharmacol. 2018;26(2):56–59.
  • Keller F, Hann A. Clinical pharmacodynamics: principles of drug response and alterations in kidney disease. Clin J Am Soc Nephrol. 2018;13(9):1413–1420.
  • Lee H, Kim DS, Ha SK, et al. A pumpless multi‐organ‐on‐a‐chip (MOC) combined with a pharmacokinetic–pharmacodynamic (PK–PD) model. Biotechnol Bioeng. 2017;114(2):432–443.
  • Sin A, Chin KC, Jamil MF, et al. The design and fabrication of three‐chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog. 2004;20(1):338–345.
  • Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol Prog. 2004;20(1):316–323.
  • Sung JH, Shuler ML. A micro cell culture analog (µCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip. 2009;9(10):1385–1394.
  • McAuliffe GJ, Chang JY, Glahn RP, et al. Development of a gastrointestinal tract microscale cell culture analog to predict drug transport. Mol Cell Biomech. 2008;5(2):119.
  • Maass C, Dallas M, LaBarge ME, et al. Establishing quasi-steady state operations of microphysiological systems (MPS) using tissue-specific metabolic dependencies. Sci Rep. 2018;8(1):8015.
  • Edington CD, Chen WLK, Geishecker E, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep. 2018;8(1):4530.
  • Wang X, Cirit M, Wishnok JS, et al. Analysis of an integrated human multi-organ microphysiological system for combined tolcapone metabolism and brain metabolomics. Anal Chem. 2019;91:8667–8675.
  • McAleer CW, Pointon A, Long CJ, et al. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci Rep. 2019;9(1):1–14.
  • McAleer CW, Long CJ, Elbrecht D, et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci Transl Med. 2019;11(497):eaav1386.
  • Jaladanki RN, Wang J-Y, editors Regulation of gastrointestinal mucosal growth. In: Granger, D. N, and Granger, J. P, editors. Colloquium series on integrated systems physiology: from molecule to function. San Rafael, CA: Morgan & Claypool Life Sciences; 2011;3(2):1–114.
  • Feher JJ. Quantitative human physiology: an introduction. Amsterdam: Academic press; 2017.
  • Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013;6(4):295–308.
  • Mörkl S, Lackner S, Meinitzer A, et al. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur J Nutr. 2018;57(8):2985–2997.
  • Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1–9.
  • Ghoshal UC, Shukla R, Ghoshal U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver. 2017;11(2):196.
  • Giannelli V, Di Gregorio V, Iebba V, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol. 2014;20(45):16795.
  • Mu Q, Kirby J, Reilly CM, et al. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598.
  • Kiefer D, Ali-Akbarian L. A brief evidence-based review of two gastrointestinal illnesses: irritable bowel and leaky gut syndromes. Altern Therapy Health Med. 2004 30;10(3):22.
  • Michielan A, D’Incà R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015;2015:1–10.
  • Du Y, Li N, Yang H, et al. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip. 2017;17(5):782–794.
  • Vernetti LA, Senutovitch N, Boltz R, et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med. 2016;241(1):101–114.
  • Prodanov L, Jindal R, Bale SS, et al. Long‐term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol Bioeng. 2016;113(1):241–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.