188
Views
13
CrossRef citations to date
0
Altmetric
Review

Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics

, & ORCID Icon
Pages 323-332 | Received 04 Oct 2020, Accepted 07 Dec 2020, Published online: 21 Dec 2020

References

  • Kumar P, Raza K, Kaushik L, et al. Role of colloidal drug delivery carriers in taxane-mediated chemotherapy: A review. Curr Pharm Des. 2016;22(33):5127–5143.
  • Raza K, Kumar M, Kumar P, et al. Topical delivery of aceclofenac: challenges and promises of novel drug delivery systems. BioMed Res Int. 2014, Article ID 406731, 1–11
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):1–33.
  • Mishra M, Kumar P, Rajawat JS, et al. Nanotechnology: revolutionizing the science of drug delivery. Curr Pharm Des. 2019;24(43):5086–5107.
  • Raza K. Nanotechnology-based drug delivery products: need, design, pharmacokinetics and regulations. Curr Pharm Des. 2019;24(43):5085.
  • Gaucher G, Satturwar P, Jones MC, et al. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147–158.
  • Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.
  • Raza K, Kumar N, Misra C, et al. Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int J Biol Macromol. 2016;88:206–212.
  • Thotakura N, Dadarwal M, Kumar R, et al. Chitosan-palmitic acid based polymeric micelles as promising carrier for circumventing pharmacokinetic and drug delivery concerns of tamoxifen. Int J Biol Macromol. 2017;102:1220–1225.
  • Thotakura N, Dadarwal M, Kumar P, et al. Chitosan-stearic acid based polymeric micelles for the effective delivery of tamoxifen: cytotoxic and pharmacokinetic evaluation. AAPS PharmSciTech. 2017;18(3):759–768.
  • Yadav H, Kumar P, Sharma V, et al. Enhanced efficacy and a better pharmacokinetic profile of tamoxifen employing polymeric micelles. RSC Adv. 2016;6(58):53351–53357.
  • Upadhyay S, Khan I, Gothwal A, et al. Conjugated and Entrapped HPMA-PLA nano-polymeric micelles based dual delivery of first line anti TB drugs: improved and safe drug delivery against sensitive and resistant mycobacterium tuberculosis. Pharm Res. 2017;34(9):1944–1955.
  • Kumar P, Kumar R, Singh B, et al. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: promising evidences from in - vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech. 2017;18(6):2037–2044
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;1–15:2013.
  • Kedar U, Phutane P, Shidhaye S, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine Nanotechnology, Biol Med. 2010;6(6):714–729.
  • Yokoyama M. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J Exp Clin Med. 2011;3(4):151–158.
  • Al ZA, Hui JZ, Higbee E, et al. Biodistribution, clearance, and toxicology of polymeric micelles loaded with 0.9 or 5 nm gold nanoparticles. J Biomed Nanotechnol. 2015;11(10):1836–1846.
  • Raza K, Kumar P, Kumar N, et al. Pharmacokinetics and biodistribution of the nanoparticles. In: Advances in nanomedicine for the delivery of therapeutic nucleic acids. Cambridge, USA: Elsevier Inc.; 2017. p. 166–186.
  • Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):691–707.
  • Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15(4):862–871.
  • Croy S, Kwon G. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12(36):4669–4684.
  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5(3):485–505.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.
  • Cong Z, Yang F, Cao L, et al. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int J Nanomedicine. 2018;13:8549–8560.
  • Singh A, Thotakura N, Singh B, et al. Delivery of docetaxel to brain employing piperine-tagged PLGA-aspartic acid polymeric micelles: improved cytotoxic and pharmacokinetic profiles. AAPS PharmSciTech. 2019;20(6):1–9.
  • Thakur CK, Thotakura N, Kumar R, et al. Chitosan-modified PLGA polymeric nanocarriers with better delivery potential for tamoxifen. Int J Biol Macromol. 2016;93(Pt A):381–389.
  • Shi Y, Van Der Meel R, Theek B, et al. Complete regression of xenograft tumors upon targeted delivery of paclitaxel via ∏ - ∏ stacking stabilized polymeric micelles. ACS Nano. 2015;9(4):3740–3752.
  • Yang Z, Cheng R, Zhao C, et al. Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics. 2018;8(15):4097–4115.
  • Naksuriya O, Shi Y, van Nostrum CF, et al. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm. 2015;94:501–512.
  • Jo MJ, Jo YH, Lee YJ, et al. Physicochemical, pharmacokinetic, and toxicity evaluation of methoxy poly(Ethylene glycol)-b-poly(d,l-lactide) polymeric micelles encapsulating alpinumisoflavone extracted from unripe cudrania tricuspidata fruit. Pharmaceutics. 2019;11(8):366.
  • Shang S, Kats D, Cao L, et al. Induction of mycobacterium tuberculosislipid-specific t cell responses by pulmonary delivery of mycolic acid-loaded polymeric micellar nanocarriers. Front Immunol. 2018;9(11):1–15.
  • Singh A, Thotakura N, Kumar R, et al. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: cellular uptake, cytotoxic and pharmacokinetic evidences. Int J Biol Macromol. 2017;95:750–756.
  • Madhwi KR, Kumar P, Singh B, et al. In vivo pharmacokinetic studies and intracellular delivery of methotrexate by means of glycine-tethered PLGA-based polymeric micelles. Int J Pharm. 2017;519(1):138–144.
  • Shen H, Liu S, Ding P, et al. Enhancement of oral bioavailability of magnolol by encapsulation in mixed micelles containing pluronic F127 and L61. J Pharm Pharmacol. 2018;70(4):498–506.
  • Patra A, Satpathy S, Shenoy AK, et al. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomedicine. 2018;13:2869–2881.
  • Barreiro-Iglesias R, Bromberg L, Temchenko M, et al. Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. J Control Release. 2004;97(3):537–549.
  • Jindal N, Mehta SK. Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B Biointerfaces. 2015;129:100–106.
  • Azmy B, Standen G, Kristova P, et al. Nanostructured DPA-MPC-DPA triblock copolymer gel for controlled drug release of ketoprofen and spironolactone. J Pharm Pharmacol. 2017;69(8):978–990.
  • Wan X, Min Y, Bludau H, et al. Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS Nano. 2018;12(3):2426–2439.
  • Moretton MA, Glisoni RJ, Chiappetta DA, et al. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces. 2010;79(2):467–479.
  • Wang G, Zhang L. Synthesis, self-assembly and pH sensitivity of PDEAEMA-PEG-PDEAEMA triblock copolymer micelles for drug delivery. React Funct Polym. 2016;107:1–10.
  • Dabholkar RD, Sawant RM, Mongayt DA, et al. Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm. 2006;315(1–2):148–157.
  • Wang Y, Liu Z, Li T, et al. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. Theranostics. 2019;9(3):708–720.
  • Shen H, Liu Y, Zhang H, et al. Enhancing the oral bioavailability of baicalein via Solutol®HS15 and Poloxamer 188 mixed micelles system. J Pharm Pharmacol. 2019;71(5):765–773.
  • Gorain B, Choudhury H, Patro Sisinthy S, et al. Polymeric micelle-based drug delivery systems for tuberculosis treatment. In: Nanotechnology based approaches for tuberculosis treatment. Cambridge, USA: Elsevier; 2020. p. 175–191.
  • Nishiyama N, Takemoto H. Polymeric Micelles. In: Kobayashi S, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Berlin Heidelberg: Springer; 2015. p. 1958–1963.
  • Gill KK, Kaddoumi A, Nazzal S. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J Drug Target. 2015;23(3):222–231.
  • Yadav H, Kumar P, Sharma V, et al. Enhanced efficacy and a better pharmacokinetic profile of tamoxifen employing polymeric micelles. RSC Adv. 2016;6(58):53351–53357.
  • Hanafy NAN, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel). 2018;10(7):1–14.
  • Villarreal-Gómez LJ, Serrano-Medina A, José Torres-Martínez E, et al. Polymeric advanced delivery systems for antineoplasic drugs: doxorubicin and 5-fluorouracil. E-Polymers. 2018;18(4):359–372.
  • Blanco E, Bey EA, Dong Y, et al. β-Lapachone-containing PEG-PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release. 2007;122(3):365–374.
  • Watanabe M, Kawano K, Yokoyama M, et al. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int J Pharm. 2006;308(1–2):183–189.
  • Sim T, Kim JE, Hoang NH, et al. development of a docetaxel micellar formulation using poly(Ethylene glycol)–polylactide–poly(ethylene glycol) (PEG–PLA–PEG) with successful reconstitution for tumor targeted drug delivery. Drug Deliv. 2018;25(1):1371–1380.
  • Ye WL, Zhao YP, Li HQ, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep. 2015;5(1):14614.
  • Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res. 2013;3(6):499–503.
  • Slor G, Papo N, Hananel U, et al. Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates. Chem Commun. 2018;54(50):6875–6878.
  • Qu G, Yao Z, Zhang C, et al. PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci. 2009;37(2):98–105.
  • Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther. 2001;8(13):999–1004.
  • Jahan ST, Sadat SMA, Walliser M, et al. Targeted therapeutic nanoparticles: an immense promise to fight against cancer. J Drug Deliv. 2017;1–24:2017.
  • Chevalier Y, Zemb T. The structure of micelles and microemulsions. Reports Prog Phys. 1990;53(3):279–371.
  • Talelli M, Barz M, Rijcken CJF, et al. Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today. 2015;10(1):93–117.
  • Zhulina EB, Borisov OV. Theory of block polymer micelles: recent advances and current challenges. Macromolecules. 2012;45(11):4429–4440.
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–1355.
  • Matsumoto M, Takenaka M, Sawamoto M, et al. Self-assembly of amphiphilic block pendant polymers as microphase separation materials and folded flower micelles. Polym Chem. 2019;10(36):4954–4961.
  • Feng YH, Zhang XP, Li JY, et al. How is a micelle formed from amphiphilic polymers in a dialysis process: insight from mesoscopic studies. Chem Phys Lett. 2020;754:137711.
  • Cabral H, Miyata K, Osada K, et al. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118(14):6844–6892.
  • Benahmed A, Ranger M, Leroux JC. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm Res. 2001;18(3):323–328.
  • Jones M-C, Leroux J-C. Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101–111.
  • La SB, Kataoka K, Okano T, et al. Development of polymeric micelles for drug delivery of indomethacin. In: Naoya Ogata, Sung Wan Kim, Jan Feijen, Teruo Okano, editors. Advanced biomaterials in biomedical engineering and drug delivery systems. Japan: Springer; 1996. p. 321–322.
  • Ai X, Zhong L, Niu H, et al. Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J Pharm Sci. 2014;9(5):244–250.
  • Pinzani V, Bressolle F, Johanne Haug I, et al. Cisplatin-induced renal toxicity and toxicity-modulating strategies: a review. Cancer Chemother Pharmacol. 1994;35(1):1–9.
  • Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther. 2000;294(1):396–401.
  • Bae Y, Nishiyama N, Fukushima S, et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem. 2005;16(1):122–130.
  • Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16(2–3):295–309.
  • Batrakova EV, Li S, Li Y, et al. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release. 2004;100(3):389–397.
  • Fraser JRE, Laurent TC, Pertoft H, et al. Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. Biochem J. 1981;200(2):415–424.
  • PeschkeP MK, Vladimir S, Subr V, et al. Synthetic macromolecular drug carriers: biodistribution of poly[(N-2-hydroxypropyl)methacrylamide] Copolymers and their accumulation in solid rat tumors. J Pharm Sci Technol. 2001;55(3):191–201.
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41(1):189–207.
  • Matsumura Y, Maeda H, New A. Concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Part 1):6387-6392.
  • Rini BI. VEGF‐targeted therapy in metastatic renal cell carcinoma. Oncologist. 2005;10(3):191–197.
  • Lin MZ, Teitell MA, Schiller GJ. The Evolution of antibodies into versatile tumor-targeting agents. Cancer Res. 2005;11:129–138.
  • Eberle AN, Mild G. Receptor-mediated tumor targeting with radiopeptides Part 1. General principles and methods. J Recept Signal Transduct. 2009;29(1):1–37.
  • Nishiyama N, Okazaki S, Cabral H, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003;63(24):8977–8983.
  • Levi FA, Hrushesky WJM, Halberg F, et al. Lethal nephrotoxicity and hematologic toxicity of cis-diamminedichloroplatinum ameliorated by optimal circadian timing and hydration. Eur J Cancer Clin Oncol. 1982;18(5):471–477.
  • Greish K, Sawa T, Fang J, et al. SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J Control Release. 2004;97(2):219–230.
  • Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release. 2005;103(2):405–418.
  • Alakhov V, Klinski E, Li S, et al. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B Biointerfaces. 1999;16(1–4):113–134.
  • Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1–3):191–202.
  • Torchilin VP, Lukyanov AN, Gao Z, et al. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A. 2003;100(10):6039–6044.
  • Taillefer J, Brasseur N, van Lier JE, et al. In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharm Pharmacol. 2001;53(2):155–166.
  • Le Garrec D, Taillefer J, Van Lier JE, et al. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target. 2002;10(5):429–437.
  • Furrer P. The central role of excipients in drug formulation. Eur Pharm Rev. 2013;18(2):67–70.
  • Ang CY, Tan SY, Zhao Y. Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Org Biomol Chem. 2014;12(27):4776–4806.
  • Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface. 2009;6(SUPPL. 3):1–12.
  • Kawaguchi T, Honda T, Nishihara M, et al. Histological study on side effects and tumor targeting of a block copolymer micelle on rats. J Control Release. 2009;136(3):240–246.
  • Zhao B, Wang XQ, Wang XY, et al. Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Part Fibre Toxicol. 2013;10(1):47.
  • Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324–336.
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.