362
Views
8
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics factors influencing smoking cessation success; the importance of nicotine metabolism

ORCID Icon &
Pages 333-349 | Received 01 Sep 2020, Accepted 10 Dec 2020, Published online: 29 Dec 2020

References

  • Department of Health U, Services H, for Disease Control C, et al. Smoking Cessation: A Report of the Surgeon General. 2020.
  • Hughes JR, Keely J, Naud S Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99:29–38.
  • Steinberg MB, Akincigil A, Delnevo CD, et al. Gender and age disparities for smoking-cessation treatment. Am J Prev Med. 2006;30(5):405–412.
  • Silagy C, Lancaster T, LF S, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. 2004;3:1–123.
  • Jorenby DE, Leischow SJ, Nides MA, et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med. 1999;340(9):685–691.
  • Cahill K, Stevens S, Perera R, et al. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst. Rev. 2013;
  • Posselt WR. “Chemische Untersuchung des Tabaks und Darstellung eines eigenthümlich wirksamen Prinzips dieser Pflanze” [Chemical investigation of tobacco and preparation of a characteristically active constituent of this plant]. Mag für Pharm. 1828;6:138–161.
  • Benowitz NL. Neurobiology of nicotine addiction: implications for smoking cessation treatment. Am J Med. 2008;121(4):S3–S10.
  • Benowitz NL, Porchet H, Sheiner L, et al. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther. 1988;44(1):23–28.
  • Armitage AKTD, TURNER DM. Absorption of nicotine cigarette and cigar smoke though the oral mucosa. Nature. 1970;226(5252):1231–1232.
  • Benowitz NL, PJ III. Daily intake of nicotine during cigarette smoking. Clin Pharmacol Ther. 1984;35(4):499–504.
  • Benowitz NL. Nicotine and smokeless tobacco. CA Cancer J Clin. 1988;38(4):244–247.
  • Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron. 1996;16(5):905–908.
  • Benowitz NL. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol. 1996;36(1):597–613.
  • Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27(9):482–491.
  • Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci. 2004;25(6):317–324.
  • Dani JA, De Biasi M. Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav. 2001;70(4):439–446.
  • Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron. 2000;27(2):349–357.
  • Di Chiara G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol. 2000;393(1–3):295–314.
  • Benowitz NL, Schwartz RS. Nicotine addiction. N Engl J Med. 2010;362(24):2295.
  • Paradiso K, Brehm P. Long-term desensitization of nicotinic acetylcholine receptors is regulated via protein kinase A-mediated phosphorylation. J Neurosci. 1998;18(22):9227–9237.
  • Wang H, Sun X. Desensitized nicotinic receptors in brain. Brain Res Rev. 2005;48(3):420–437.
  • Brody AL, Mandelkern MA, London ED, et al. Cigarette smoking saturates brain α4β2 nicotinic acetylcholine receptors. Arch Gen Psychiatry. 2006;63(8):907–915.
  • Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616–622.
  • Fowler CD, Lu Q, Johnson PM, et al. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011;471(7340):597–601.
  • Thorgeirsson TE, Geller F, Sulem P, et al., KS. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638–642.
  • Falcone M, Cao W, Bernardo L, et al. Brain Responses to Smoking Cues Differ Based on Nicotine Metabolism Rate. Biol Psychiatry. 2016 Aug 1;80(3):190–7. doi:10.1016/j.biopsych.2015.11.015. Epub 2015 Nov 26. PMID: 26805583; PMCID: PMC5625335
  • Dubroff JG, Doot RK, Falcone M, et al. Decreased nicotinic receptor availability in smokers with slow rates of nicotine metabolism. J Nucl Med. 2015;56(11):1724–1729.
  • Tang DW, Hello B, Mroziewicz M, et al. Genetic variation in CYP2A6 predicts neural reactivity to smoking cues as measured using fMRI. Neuroimage. 2012;60(4):2136–2143.
  • Sofuoglu M, Herman AI, Nadim H, et al. Rapid nicotine clearance is associated with greater reward and heart rate increases from intravenous nicotine. Neuropsychopharmacology. 2012;37(6):1509–1516.
  • Munafò MR, Johnstone EC, Walther D, et al. CHRNA3 rs1051730 genotype and short-term smoking cessation. Nicotine Tob Res. 2011;13(10):982–988.
  • Munafò MR, Timofeeva MN, Morris RW, et al. Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. Rev. | JNCI. 2012;104:740–748.
  • Bierut LJ, Dependence N. Genetic Variation in the Nicotinic Receptors. Drug Alcohol Depend. 2009;1:64–69.
  • Sarginson JE, Killen JD, Lazzeroni LC, et al. Markers in the 15q24 nicotinic receptor subunit gene cluster (CHRNA5-A3-B4) predict severity of nicotine addiction and response to smoking cessation therapy. Am J Med Genet Part B Neuropsychiatr Genet. 2011;156(3):275–284.
  • Kuryatov A, Berrettini W, Lindstrom J. Acetylcholine receptor (AChR) α5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (α4β2) 2α5 AChR function. Mol Pharmacol. 2011;79(1):119–125.
  • Furberg H, Kim Y, Dackor J, et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42:441–447.
  • Saccone SF, Hinrichs AL, Saccone NL, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16(1):36–49.
  • Chen LS, Hung RJ, Baker T, et al. CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis-a meta-analysis. J Natl Cancer Inst. 2015;107(5):1–9.
  • Chen L-S, Saccone NL, Culverhouse RC, et al. Smoking and genetic risk variation across populations of european, asian, and african-american ancestry-a meta-analysis of chromosome 15q25 NIH public access author manuscript. Genet Epidemiol. 2012;36(4):340–351.
  • Berrettini W, Yuan X, Tozzi F, et al. α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry. 2008;13(4):368–373.
  • David SP, Hamidovic A, Chen GK, et al. Genome-wide meta-analyses of smoking behaviors in african americans. Transl. Psychiatry. 2012;2.
  • Wang JC, Cruchaga C, Saccone NL, et al. Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet. 2009;18(16):3125–3135.
  • Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: A meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6(8):1–16.
  • Bierut LJ, Madden PAF, Breslau N, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet. 2007;16(1):24–35.
  • Liu QR, Drgon T, Walther D, et al. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc Natl Acad Sci U S A. 2005;102(33):11864–11869.
  • Pérez-Rubio G, Pérez-Rodríguez ME, Fernández-López JC, et al. SNPs in NRXN1 and CHRNA5 are associated to smoking and regulation of GABAergic and glutamatergic pathways. Pharmacogenomics. 2016;17(10):1145–1158.
  • Docampo E, Ribasés M, Gratacòs M, et al. Association of neurexin 3 polymorphisms with smoking behavior. Genes, Brain Behav. 2012;11(6):704–711.
  • Grant BF, Hasin DS, Chou SP, et al. Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Archives of General Psychiatry. 2004;61(11):1107–1115.
  • Zuckerman M. Sensation seeking: A comparative approach to a human trait. Behav Brain Sci. 1984;7(3):413–434.
  • Mitchell SH. Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology (Berl). 1999;146(4):455–464.
  • West R, Mcneill A, Raw M. Smoking cessation update Smoking cessation guidelines for health professionals: an update. Thorax. 2000;55(12):987–999.
  • Fiore MC, Jaén CR, Baker TB et al. A clinical practice guideline for treating tobacco use and dependence: 2008 update. A U.S. Public Health Service Report. Am. J. Prev. Med. 2008;35:158–176.
  • Scherman A, Tolosa JE, McEvoy C, Ashley Scherman JET and CM. Smoking cessation in pregnancy: a continuing challenge in the United States. Ther Adv Drug Saf. 2018;9(8):457–474.
  • US Food and Drug Administration. Drug approval package: nicorette (nicotine polacrilex gum) NDA# 18-612/S25 & 20-066/S7 [Internet]. 1998 [ cited 2020 Apr 21]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/18-612s025_Nicorette.cfm.
  • Cole PV, Feyerabend C, Cole PV. Plasma nicotine levels after cigarette smoking and chewing nicotine gum. Br Med J. 1976;1(6017):1043–1046.
  • Hartmann-Boyce J, Chepkin SC, Ye W, et al. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst. Rev. John Wiley and Sons Ltd; 2018.
  • Cooper BR, Wang CM, Cox RF, et al. Evidence that the acute behavioral and electrophysiological effects of bupropion (wellbutrin®) are mediated by a noradrenergic mechanism. Neuropsychopharmacology. 1994;11(2):133–141.
  • US Food and Drug Administration. Drug approval package: zyban (bupropion hydrochloride) NDA# 020711s002/s004 [Internet]. 1997 [ cited 2020 Apr 21]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/020711_s002s004_ZybanTOC.cfm.
  • Hurt RD, Sachs DPL, Glover ED, et al. A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med. 1997;337(17): 1995–1202. DOI:10.1056/NEJM199710233371703
  • Aubin H-J. Tolerability and safety of sustained-release bupropion in the management of smoking cessation. Drugs. 2002;62(Supplement 2):45–52.
  • Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an r42 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48(10):3474–3477.
  • US Food and Drug Administration. Drug approval package: chantix (varenicline) NDA #021928 [Internet]. 2006 [ cited 2020 Apr 21]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021928_s000_chantixtoc.cfm.
  • Jorenby DE, Hays JT, Rigotti NA, et al. Efficacy of varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation a randomized controlled trial. J Am Med Assoc. 2006;296(1):56–63.
  • Oncken C, Gonzales D, Nides M, et al. Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. Arch Intern Med. 2006;166(15):1571–1577.
  • Gonzales D, Rennard SI, Nides M, et al. Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. J Am Med Assoc. 2006;296(1):47–55.
  • Gunnell D, Irvine D, Wise L, et al. Varenicline and suicidal behaviour: a cohort study based on data from the general practice research database. BMJ. 2009;339(oct01 1):1–7.
  • DP K, Paciga S, Pickering E, et al. Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology. 2012;37(3):641–650.
  • Bauld L, Bell K, McCullough L, et al. The effectiveness of NHS smoking cessation services: A systematic review. J Public Health (Bangkok). 2010;32(1):71–82.
  • Quaak M, Van Schayck CP, Knaapen AM, et al. Genetic variation as a predictor of smoking cessation success. A promising preventive and intervention tool for chronic respiratory diseases? Eur Respir J. 2009;33(3):468–480.
  • Bough KJ, Lerman C, Rose JE, et al. Biomarkers for smoking cessation. Clin Pharmacol Ther. 2013;93(6):526–538.
  • Quaak M, Van Schooten FJ, Van Schayck CP. Pharmacogenetics of smoking: how far to the clinic? Pharmacogenomics. 2014;15(6):723–726.
  • Xian H, Scherrer JF, Madden PAF, et al. The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. PubMed Nicotine Tob Res. 2003;5(2):245–254.
  • Schuit E, Panagiotou OA, Munafò MR, et al. Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers. Cochrane Database Syst Rev. 2017;9:1–321.
  • Chen L-S, Baker TB, Piper ME, et al. Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. Am J Psychiatry. 2012;169(7):735–742.
  • Bergen AW, Javitz HS, Krasnow R, et al. Nicotinic acetylcholine receptor variation and response to smoking cessation therapies. Pharmacogenet Genomics. 2013;23(2):94–103.
  • Lerman C, Schnoll RA, Hawk LW, et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: A randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2015;3(2):131–138.
  • Patterson F, Schnoll RA, Wileyto EP, et al. Toward personalized therapy for smoking cessation: A randomized placebo-controlled trial of bupropion. Clin Pharmacol Ther. 2008;84(3):320–325.
  • Schnoll RA, Patterson F, Wileyto EP, et al. Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: A validation study. Pharmacol Biochem Behav. 2009;92(1):6–11.
  • Dale LC, Glover ED, Sachs DPL, et al. Bupropion for smoking cessation: predictors of successful outcome. Chest. 2001;119(5):1357–1364.
  • Lerman C, Jepson C, Wileyto EP, et al. Role of Functional Genetic Variation in the Dopamine D2 Receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. Neuropsychopharmacology. 2006;31(1):231–242.
  • Lerman C, Wileyto EP, Audrain J, et al. Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Heal Psychol. 2003;22(5):541–548.
  • Swan GE, Jack LM, Valdes AM, et al. Joint effect of dopaminergic genes on likelihood of smoking following treatment with bupropion SR. Heal Psychol. 2007;26(3):361–368.
  • O’Gara C, Stapleton J, Sutherland G, et al. Dopamine transporter polymorphisms are associated with short-term response to smoking cessation treatment. Pharmacogenet Genomics. 2007;17(1):61–67.
  • Berrettini WH, Wileyto EP, Epstein L, et al. Catechol-O-Methyltransferase (COMT) gene variants predict response to bupropion therapy for tobacco dependence. Biol Psychiatry. 2007;61(1):111–118.
  • Faucette SR, Hawke RL, Lecluyse EL, et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. DRUG Metab Dispos Drug Metab Dispos. 2000;28:1222–1230.
  • Claw KG, Beans JA, Lee S-B, et al. Pharmacogenomics of nicotine metabolism: novel CYP2A6 and CYP2B6 genetic variation patterns in alaska native and american indian populations. Nicotine Tob Res. 2019;22(6):910–918.
  • Kharasch ED, Crafford A. Common polymorphisms of CYP2B6 influence stereoselective bupropion disposition. Clin Pharmacol Ther. 2019;105(1):142–152.
  • Hesse LM, He P, Krishnaswamy S, et al. Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics. 2004;14(4):225–238.
  • Benowitz NL, Zhu AZXX, Tyndale RF, et al. Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state. Pharmacogenet Genomics. 2013;23(3):135–141.
  • Lee AM, Jepson C, Hoffmann E, et al. CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol Psychiatry. 2007;62(6):635–641.
  • Thorgeirsson TE, Gudbjartsson DF, Surakka I, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42(5):448–453.
  • Kirchheiner J, Klein C, Meineke I, et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics. 2003;13(10):619–626.
  • Zhu AZX, Cox LS, Nollen N, et al. CYP2B6 and bupropion s smoking-cessation pharmacology: the role of hydroxybupropion. Clin Pharmacol Ther. 2012;92(6):771–777.
  • Lerman C, Shields PG, Wileyto EP, et al. Pharmacogenetic investigation of smoking cessation treatment. Pharmacogenetics. 2002;12(8):627–634.
  • Zhu AZX, Zhou Q, Cox LS, et al. Gene variants in CYP2C19 are associated with altered in vivo bupropion pharmacokinetics but not bupropion-assisted smoking cessation outcomes. Drug Metab Dispos. 2014;42(11):1971–1977.
  • Connarn JN, Flowers S, Kelly M, et al. Pharmacokinetics and pharmacogenomics of bupropion in three different formulations with different release kinetics in healthy human volunteers. Aaps J. 2017;19(5):1513–1522.
  • Gufford BT, Lu JBL, Metzger IF, et al. Stereoselective glucuronidation of bupropion metabolites in vitro and in vivo. Drug Metab Dispos. 2016;44(4):544–553.
  • Gault J, Robinson M, Berger R, et al. Genomic organization and partial duplication of the human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics. 1998;52(2):173–185.
  • Cameli C, Bacchelli E, De Paola M, et al. Genetic variation in CHRNA7 and CHRFAM7A is associated with nicotine dependence and response to varenicline treatment. Eur J Hum Genet. 2018;26(12):1824–1831.
  • Scott Obach R, Reed-Hagen AE, Krueger SS, et al. Metabolism and disposition of varenicline, a selective α4β2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab Dispos. 2006;34(1):121–130.
  • Glatard A, Guidi M, Dobrinas M, et al. Influence of body weight and UGT2B7 polymorphism on varenicline exposure in a cohort of smokers from the general population. Eur J Clin Pharmacol. 2019;75(7):939–949.
  • Feng B, Obach R, Burstein A, et al. Effect of Human Renal Cationic Transporter Inhibition on the Pharmacokinetics of Varenicline, a New Therapy for Smoking Cessation: an In Vitro–In Vivo Study. Clin Pharmacol Ther. 2008;83(4):567–576.
  • Faessel HM, Obach RS, Rollema H, et al. A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin. Pharmacokinet. Springer; Sep 30, 2010 p. 799–816.
  • Bergen AW, Javitz HS, Krasnow R, et al. Organic cation transporter variation and response to smoking cessation therapies. Nicotine Tob Res. 2014;16(12):1638–1646.
  • Rocha Santos J, Tomaz PRX, Issa JS, et al. CHRNA4 rs1044396 is associated with smoking cessation in varenicline therapy. Front Genet. 2015;6:1–7.
  • Saccone NL, Saccone SF, Hinrichs AL, et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet Part B Neuropsychiatr Genet. 2009;150(4):453–466.
  • Pianezza ML, Sellers EM, Tyndale RF, RFT. Nicotine metabolism defect reduces smoking. Nature. 1998;393(6687):750.
  • Benowitz NL. Nicotine addiction. Prim Care - Clin Off Pract. 1999;26:611–631.
  • Perez-Paramo YX, Chen G, Ashmore JH, et al. Nicotine-N’-oxidation by flavin monooxygenase enzymes. Cancer Epidemiol Biomarkers Prev. 2019;28(2):311–320.
  • Park SB, Jacob P, Benowitz NL, et al. Stereoselective metabolism of (S)-(-)-nicotine in humans: formation of trans-(S)-(-)-nicotine N-1ʹ-oxide. Chem Res Toxicol. 1993;6(6):880–888.
  • Nakajima M, Yoshihiko T, Noriaki K, et al. Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos. 1996;24(11):1212–1217.
  • Cashman JR, Park SB, Yang ZC, et al. Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N’-oxide. Chem Res Toxicol. 1992;5(5):639–646.
  • Hecht SS, Hochalter BJ, Villalta PW, et al. 2ʹ-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor. Proc Natl Acad Sci U S A. 2000;97(23):12493–12497.
  • Yamanaka H, Nakajima M, Fukami T, et al. CYP2A6 and CYP2B6 are involved in nornicotine formation from nicotine in humans: interindividual differences in these contributions. Drug Metab Dispos. 2005;33(12):1811–1818.
  • Nakajima M, Yamamoto T, Nunoya K-I, et al. Characterization of CYP2A6 Involved in 3ʹ-hydroxylation of cotinine in human liver microsomes. Pharmacol Exp Ther. 1996;277:1010–1015.
  • Murphy SE, Johnson LM, Pullo DA. Characterization of multiple products of cytochrome P450 2A6-catalyzed cotinine metabolism. Chem Res Toxicol. 1999;12(7):639–645.
  • Kuehl GE, Murphy SE. N-glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2003;31(11):1361–1368.
  • Kaivosaari S, Toivonen PI, LM H, et al. nicotine glucuronidation and the human UDP-glucuronosyltransferase UGT2B10. Mol Pharmacol. 2007;72(3):761–768.
  • Chen G, Blevins-Primeau AS, Dellinger RW, et al. Glucuronidation of nicotine and cotinine by UGT2B10: loss of function by the UGT2B10 Codon 67 (Asp > Tyr) polymorphism function by the UGT2B10 Codon 67 (Asp > Tyr) polymorphism. Cancer Res. 2007;67(19):9024–9029.
  • Nakajima M, Tanaka E, Kwon JT, et al. Characterization of nicotine and cotinine N-glucuronidations in human liver microsomes. Drug Metab Dispos. 2002;30(12):1484–1490.
  • Chen G, Giambrone NE, Lazarus P. Glucuronidation of trans-3ʹ-hydroxycotinine by UGT2B17 and UGT2B10. Pharmacogenet Genomics. 2012;22(3):183–190.
  • Yamanaka H, Nakajima M, Katoh M, et al. Trans-3′-hydroxycotinine O- and N-glucuronidations in human liver microsomes. Drug Metab Dispos. 2005;33(1):23–30.
  • Benowitz NL, Jacob P. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther. 1994;56(5):483–493.
  • Kandel DB, Hu M-C, Schaffran C, et al. Urine nicotine metabolites and smoking behavior in a multiracial/multiethnic national sample of young adults. Am J Epidemiol. 2007;165(8):901–910.
  • Swan GE, Lessov-Schlaggar CN, Bergen AW, et al. Genetic and environmental influences on the ratio of 3 ’ hydroxycotinine to cotinine in plasma and urine. Pharmacogenet Genomics. 2009;19(5):388–398.
  • Nakajima M, Kuroiwa Y, Yokoi T. Interindividual differences in nicotine metabolism and genetic polymorphisms of human CYP2A6. Drug Metab Rev. 2002;34(4):865–877.
  • Rangiah K, Hwang W-T, Mesaros C, et al. Nicotine exposure and metabolizer phenotypes from ana lysis of urinary nicotine and its 15 metabolites by LC–MS. Bioanalysis. 2011;3(7):745–761.
  • Murphy SE, Park SSL, Thompson EF, et al. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups. Carcinogenesis. 2014;35(11):2526–2533.
  • Nakajima M, Yokoi T. Interindividual variability in nicotine metabolism: C-oxidation and glucuronidation. Drug Metab Pharmacokinet. 2005;20(4):227–235.
  • Yamanaka H, Nakajima M, Nishimura K, et al. Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur J Pharm Sci. 2004;22(5):419–425.
  • SE M. Nicotine metabolism and smoking: ethnic differences in the role of P450 2A6. Chem Res Toxicol. 2017;30(1):410–419.
  • Murphy SE, Sipe CJ, Choi K, et al. Low cotinine glucuronidation results in higher serum and saliva cotinine in african american compared to white smokers. Cancer Epidemiol Biomarkers Prev. 2017;26(7):1093–1099.
  • Benowitz NL, Pomerleau OF, Pomerleau CS, et al. Nicotine metabolite ratio as a predictor of cigarette consumption. Nicotine Tob Res. 2003;5(5):621–624.
  • Dempsey D, Tutka P, Iii PJ, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;450(1):64–72.
  • Lea RA, Dickson S, Benowitz NL. Within-subject variation of the salivary 3HC/COT ratio in regular daily smokers: prospects for estimating CYP2A6 enzyme activity in large-scale surveys of nicotine metabolic rate. J Anal Toxicol. 2006;30(6):386–389.
  • St Helen G, Jacob P, Benowitz NL. Stability of the nicotine metabolite ratio in smokers of progressively reduced nicotine content cigarettes. Nicotine Tob Res. 2013;15(11):1939–1942.
  • St.Helen G, Novalen M, Heitjan DF, et al. Reproducibility of the nicotine metabolite ratio in cigarette smokers. Cancer Epidemiol Biomarkers Prev. 2012;21(7):1105–1114.
  • Ashare RL, Thompson M, Leone F, et al. Differences in the rate of nicotine metabolism among smokers with and without HIV. AIDS. 2019;33(6):1083–1088.
  • Wells QS, Freiberg MS, Greevy RA, et al. Nicotine metabolism-informed care for smoking cessation: A pilot precision RCT. Nicotine Tob Res. 2018;20(12):1489–1496.
  • Lerman C, Tyndale R, Patterson F, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther. 2006;79(6):600–608.
  • Kaufmann A, Hitsman B, Goelz PM, et al. Addictive behaviors rate of nicotine metabolism and smoking cessation outcomes in a community-based sample of treatment-seeking smokers. Addict Behav. 2015;51:93–99.
  • Ho MK, Mwenifumbo JC, Al Koudsi N, et al. Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in african-american light smokers. Clin Pharmacol Ther. 2009;85(6):635–643.
  • Shahab L, Bauld L, McNeill A, et al. Does the nicotine metabolite ratio moderate smoking cessation treatment outcomes in real-world settings? A prospective study. Addiction. 2019;114(2):304–314.
  • Verplaetse TL, MacKenzie RP, Roberts W, et al. associations between nicotine metabolite ratio and gender with transitions in cigarette smoking status and E-cigarette use: findings across waves 1 and 2 of the population assessment of tobacco and health (PATH) study. Nicotine Tob Res. 2020;22(8):1316–1321.
  • West O, Hajek P, Mcrobbie H, et al. Systematic review of the relationship between the 3-hydroxycotinine/cotinine ratio and cigarette dependence. Psychopharmacology (Berl). 2011;218(2):313–322.
  • Johnstone E, Benowitz N, Cargill A, et al. Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin Pharmacol Ther. 2006;80(4):319–330.
  • Shahab L, Mortimer E, Bauld L, et al. Characterising the nicotine metabolite ratio and its association with treatment choice: A cross sectional analysis of stop smoking services in England. Sci Rep. 2017;7(1):1–9.
  • B V F, O’Connor RJ, Benowitz N, et al. Nicotine Metabolite Ratio (NMR) prospectively predicts smoking relapse: longitudinal findings from ITC surveys in five countries. Nicotine Tob Res. 2017;19(9):1040–1047.
  • Xue Y, Sun D, Daly A, et al. Adaptive evolution of UGT2B17 copy-number variation. Am J Hum Genet. 2008;83(3):337–346.
  • Zhu AZX, Zhou Q, Cox LS, et al. Variation in trans-3ʹ-hydroxycotinine glucuronidation does not alter the nicotine metabolite ratio or nicotine intake. PLoS One. 2013;8:1–7.
  • Chenoweth MJ, Novalen M, Jr LWH, et al. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1773–1782.
  • Benowitz N, Lessovschlaggar C, Swan G, et al. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79(5):480–488.
  • Higashi E, Fukami T, Itoh M, et al. Human CYP2A6 Is Induced by estrogen via estrogen receptor. DRUG Metab Dispos Drug Metab Dispos. 2007;35(10):1935–1941.
  • Mwenifumbo JC, Sellers EM, Tyndale RF. Nicotine metabolism and CYP2A6 activity in a population of black african descent: impact of gender and light smoking. Drug Alcohol Depend. 2007;89(1):24–33.
  • Bowker K, Lewis S, Coleman T, et al. Changes in the rate of nicotine metabolism across pregnancy: A longitudinal study. Addiction. 2015;110(11):1827–1832.
  • Allenby CE, Boylan KA, Lerman C,,, et al. Precision medicine for tobacco dependence: development and validation of the nicotine metabolite ratio. J Neuroimmune Pharmacol. 2016;11(3):471–483.
  • Mooney ME, Li -Z-Z, Murphy SE, et al. Stability of the Nicotine Metabolite Ratio in ad Libitum and Reducing Smokers. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1396–1400.
  • MacDougall JM, Fandrick K, Zhang X, et al. Inhibition of human liver microsomal (S)-nicotine oxidation by (-)-menthol and analogues. Chem Res Toxicol. 2003;16(8):988–993.
  • Benowitz NL, Herrera B, Jacob P. Mentholated cigarette smoking inhibits nicotine metabolism. J Pharmacol Exp Ther. 2004;310(3):1208–1215.
  • Strasser AA, Benowitz NL, Pinto AG, et al. Nicotine metabolite ratio predicts smoking topography and carcinogen biomarker level. Cancer Epidemiol Biomarkers Prev. 2011;20(2):234–238.
  • Gaedigk et al. 2018 CPT 103:399; Gaedigk et al. 2019, CPT 105:29 et al. Pharmacogene Variation Consortium (PharmVar) at www.PharmVar.org. [ cited 2020 Nov 18]. Available from: https://www.pharmvar.org/.
  • Bloom J, Hinrichs AL, Wang JC, et al. the contribution of common CYP2A6 alleles to variation in nicotine metabolism among european americans. Pharmacogenet Genomics. 2012;21(7):403–416.
  • Bloom AJ, Harari O, Martinez M, et al. A compensatory effect upon splicing results in normal function of the CYP2A6*14 allele. Pharmacogenet Genomics. 2013;23(3):107–116.
  • Yuan J-M-M, Nelson HH, Carmella SG, et al. CYP2A6 genetic polymorphisms and biomarkers of tobacco smoke constituents in relation to risk of lung cancer in the singapore chinese health study. Carcinogenesis. 2017;38(4):411–418.
  • Yuan J-M-M, Nelson HH, Butler LM, et al. Genetic determinants of cytochrome P450 2A6 activity and biomarkers of tobacco smoke exposure in relation to risk of lung cancer development in the Shanghai cohort study. Int J Cancer. 2016;138(9):2161–2171.
  • Pérez-Rubio G, López-Flores LA, Ramírez-Venegas A, et al. Genetic polymorphisms in CYP2A6 are associated with a risk of cigarette smoking and predispose to smoking at younger ages. Gene. 2017;628:205–210.
  • Verde Z, Santiago C, JMR G-M, et al. “Smoking Genes”: A genetic association study. PLoS One. 2011;6(10):3–8.
  • Minematsu N, Nakamura H, Furuuchi M, et al. Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. Eur Respir J. 2006;27(2):289–292.
  • Xu C, Rao YS, Xu B, et al. An in vivo pilot study characterizing the new CYP2A6*7, *8, and *10 alleles. Biochem Biophys Res Commun. 2002;290(1):318–324.
  • Pitarque M, Von Richter O, Oke B, et al. Identification of a single nucleotide polymorphism in the TATA box of the CYP2A6 gene: impairment of its promoter activity. Biochem Biophys Res Commun. 2001;284(2):455–460.
  • Yoshida R, Nakajima M, Nishimura K, et al. Effects of polymorphism in promoter region of human CYP2A6 gene (CYP2A6*9) on expression level of messenger ribonucleic acid and enzymatic activity in vivo and in vitro. Clin Pharmacol Ther. 2003;74(1):69–76.
  • Oscarson M, McLellan RA, Asp V, et al. Characterization of a novel CYP2A7/CYP2A6 hybrid allele (CYP2A6*12) that causes reduced CYP2A6 activity. Hum Mutat. 2002;20(4):275–283.
  • Borrego-Soto G, Perez-Paramo YX, Chen G, et al. Genetic variants in CYP2A6 and UGT1A9 genes associated with urinary nicotine metabolites in young mexican smokers. Pharmacogenomics J. 2020;20(4):586–594.
  • Piliguian M, Zhu AZX, Zhou Q, et al. Novel CYP2A6 variants identified in african americans are associated with slow nicotine metabolism in vitro and in vivo. Pharmacogenet Genomics. 2014;24(2):118–128.
  • Chenoweth MJ, Ware JJ, Zhu AZX, et al. Genome-wide association study of a nicotine metabolism biomarker in African American smokers: impact of chromosome 19 genetic influences. Addiction. 2018;113:509–523.
  • Fukami T, Nakajima M, Yoshida R, et al. A novel polymorphism of human CYP2A6 gene CYP2A6*17 has an amino acid substitution (V365M) that decreases enzymatic activity in vitro and in vivo. Clin Pharmacol Ther. 2004;76(6):519–527.
  • Ho MK, Mwenifumbo JC, Zhao B, et al. A novel CYP2A6 allele, CYP2A6*23, impairs enzyme function in vitro and in vivo and decreases smoking in a population of black-african descent. Pharmacogenet Genomics. 2008;18(1):67–75.
  • Al Koudsi N, Ahluwalia JS, Lin S-K, et al. A novel CYP2A6 allele (CYP2A6*35) resulting in an amino-acid substitution (Asn438Tyr) is associated with lower CYP2A6 activity in vivo. Pharmacogenomics J. 2009;9(4):274–282.
  • Baurley JW, Edlund CK, Pardamean CI, et al. Genome-wide association of the laboratory- based nicotine metabolite ratio in three ancestries. Nicotine Tob Res. 2016;18(9):1837–1844.
  • Patel YM, Park SL, Han Y,,, et al. Novel association of genetic markers affecting CYP2A6 activity and lung cancer risk. Cancer Res. 2016;76(19):5768–5776.
  • Loukola A, Buchwald J, Gupta R, et al. A genome-wide association study of a biomarker of nicotine metabolism. PLoS Genet. 2015;11(9):1–23.
  • Buchwald J, Chenoweth MJ, Palviainen T, et al. Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent. Mol. Psychiatry. 2020;
  • Al Koudsi N, Tyndale RF. Hepatic CYP2B6 is altered by genetic, physiologic, and environmental factors but plays little role in nicotine metabolism. Xenobiotica. 2010;40(6):381–392.
  • Dicke KE, Skrlin SM, Murphy SE. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab Dispos. 2005;33(12):1760–1764.
  • Yamazaki H, Inoue K, Hashimoto M, et al. Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999;73(2):65–70.
  • Bloom AJ, Martinez M, Chen LS, et al. CYP2B6 non-coding variation associated with smoking cessation is also associated with differences in allelic expression, splicing, and nicotine metabolism independent of common amino-acid changes. PLoS One. 2013;8(11):1–13.
  • HZ R, AM V, DM N, et al. Gene-gene interactions between CYP2B6 and CYP2A6 in nicotine metabolism. Pharmacogenet Genomics. 2007;17(12):1007–1015.
  • Bloom AJ, Wang PF, Kharasch ED. Nicotine oxidation by genetic variants of CYP2B6 and in human brain microsomes. Pharmacol Res Perspect. 2019;7(2):1–8.
  • Taghavi T, Gideon SH, Benowitz NL, RFT. Effect of UGT2B10, UGT2B17, FMO3, and OCT2 Genetic Variation on Nicotine and Cotinine Pharmacokinetics and Smoking in African Americans. Pharmacogenet Genomics. 2017;20:48–55.
  • Chenoweth MJ, Zhu AZX, Sanderson L, et al. Variation in P450 oxidoreductase (POR) A503V and flavin-containing monooxygenase (FMO) −3 E158K is associated with minor alterations in nicotine metabolism, but does not alter cigarette consumption. Pharmacogenet Genomics. 2013;24(3):172–176.
  • Bushueva O, Solodilova M, Churnosov M, et al. the flavin-containing monooxygenase 3 gene and essential hypertension: the joint effect of polymorphism E158K and cigarette smoking on disease susceptibility. Int J Hypertens. 2014;2014:1–5.
  • Poetsch M, Czerwinski M, Wingenfeld L, et al. A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS). Int J Legal Med. 2010;124(4):301–306.
  • Teitelbaum AM, Murphy SE, Akk G, et al. Nicotine dependence is associated with functional variation in FMO3, an enzyme that metabolizes nicotine in the brain. Pharmacogenomics J. 2017;1–8.
  • Saccone SF, Saccone NL, Swan GE, et al. Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics. 2008;24(16):1805–1811.
  • Xu M, Bhatt DK, Yeung CK, et al. Genetic and non-genetic factors associated with protein abundance of flavin-containing monooxygenase 3 in human liver. J Pharmacol Exp Ther. 2017;363(2):265–274.
  • Bloom AJ, Murphy SE, Martinez M, et al. Effects upon in-vivo nicotine metabolism reveal functional variation in FMO3 associated with cigarette consumption. Pharmacogenet Genomics. 2013;23:62–68.
  • Hinrichs AL, Murphy SE, Wang JC, et al. Common polymorphisms in FMO1 are associated with nicotine dependence. Pharmacogenet Genomics. 2011;21:397–402.
  • Dolphin CT, Beckett DJ, Janmohamed A, et al. The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, nonfunctional protein. J Biol Chem. 1998;273(46):30599–30607.
  • Bloom AJ, von Weymarn LB, Martinez M, et al. The contribution of common UGT2B10 and CYP2A6 alleles to variation in nicotine glucuronidation among European Americans. Pharmacogenet Genomics. 2013;23(12):706–716.
  • Berg JZ, Von Weymarn LB, Thompson EA, et al. UGT2B10 genotype influences nicotine glucuronidation, oxidation, and consumption. Cancer Epidemiol Biomarkers Prev. 2010;19(6):1423–1431.
  • Berg JZ, Mason J, Boettcher AJ, et al. Nicotine metabolism in african americans and european americans: variation in glucuronidation by ethnicity and UGT2B10 haplotype. J Pharmacol Exp Ther. 2010;332(1):202–209.
  • Patel YM, Stram DO, Wilkens LR, et al. The contribution of common genetic variation to nicotine and cotinine glucuronidation in multiple ethnic/racial populations. Cancer Epidemiol Biomarkers Prev. 2015;24(1):119–127.
  • Chen G, Giambrone NE Jr, Dluzen DF, et al. Glucuronidation genotypes and nicotine metabolic phenotypes: importance of UGT2B10 and UGT2B17 knock-out polymorphisms. Cancer Res. 2010;70(19):7543–7552.
  • Wassenaar CA, Conti DV, Das S, et al. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers. Cancer Epidemiol Biomarkers Prev. 2015;24(1):94–104.
  • Kaivosaari S, Finel M, Koskinen M. N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica. 2011;41(8):652–669.
  • Ghotbi R, Mannheimer B, Aklillu E, et al. Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure—an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol. 2010;66(5):465–474.
  • Urakami Y, Okuda M, Masuda S, et al. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–805.
  • Kuehn BM. Pilot programs seek to integrate genomic data into practice. JAMA. 2017 Aug;1(318):410–412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.