4,617
Views
20
CrossRef citations to date
0
Altmetric
Review

Tumor grafted – chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation

, , , , ORCID Icon & ORCID Icon
Pages 947-968 | Received 09 Dec 2020, Accepted 18 Jan 2021, Published online: 10 Feb 2021

References

  • Antoni D, Burckel H, Josset E, et al. Culture: a breakthrough in vivo. Int J Mol Sci. 2015;16(3):5517–5527.
  • Hirschhaeuser F, Menne H, Dittfeld C, et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.
  • Nath S, Devi GR. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108.
  • European Parliament. Directive 2010/63/EU - On the protection of animals used for scientific purposes https://eur-lex.europa.eu/eli/dir/2010/63/oj.
  • Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54(2):120–132.
  • Mapanao AK, Santi M, Combined Chemo-Photothermal VV. Treatment of three-dimensional head and neck squamous cell carcinomas by gold nano-architectures. J Colloid Interface Sci. 2021;582:1003–1011.
  • de Kruijff RM, van der Meer AJGM, Windmeijer CAA, et al. The therapeutic potential of polymersomes loaded with 225Ac evaluated in 2D and 3D in vitro glioma models. Eur J Pharm Biopharm. 2018 (Oct 2017);127:85–91.
  • Cassano D, Santi M, D’Autilia F, et al. Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures. Mater Horizons. 2019;6(3):531–537.
  • Mapanao AK, Voliani, V. Three-dimensional tumor models: promoting Breakthroughs in nanotheranostics translational research. Appl Mater Today. 2020;19:100552.
  • Mangir N, Raza A, Haycock JW, et al. An improved in vivo methodology to visualise tumour induced changes in vasculature using the chick chorionic allantoic membrane assay. In Vivo (Brooklyn). 2018;32(3):461–472.
  • Rovithi M, Avan A, Funel N, et al. Development of bioluminescent Chick Chorioallantoic Membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing. Sci Rep. July 2016;2017(7):1–13.
  • Romanoff AL. From the egg to the chick. Cornell Rural School Leaflet. 1939;33(1):57–63.
  • Smith TWJ. The avian embryo. Mississippi State University Extension Service. 2019.
  • Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp Cell Res. 2014;328(2):314–324.
  • Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008;130(6):1119–1130.
  • Ribatti, D. The chick embryo Chorioallantoic Membrane (CAM). A multifaceted experimental model. Mech Dev. 2016;141:70–77.
  • Gabrielli MG, Accili D. The Chick Chorioallantoic Membrane: a Model of Molecular, Structural, and Functional Adaptation to Transepithelial Ion Transport and Barrier Function during Embryonic Development. J Biomed Biotechnol. 2010;2010:940741.
  • Vargas A, Zeisser-Labouèbe M, Lange N, et al. The chick embryo and Its Chorioallantoic Membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliv Rev. 2007;59(11):1162–1176.
  • Samkoe KS, Clancy AA, Karotki A, et al. Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration. J Biomed Opt. 2007;12(3):034025.
  • Ribatti D, Vacca A, Cantatore FP, et al. An experimental study in the chick embryo chorioallantoic membrane of the anti-angiogenic activity of cyclosporine in rheumatoid arthritis versus osteoarthritis. Inflamm Res. 2000;49(8):418–423.
  • Moreno-Jiménez I, Hulsart-Billstrom G, Lanham SA, Janeczek AA, Kontouli N, Kanczler JM, Evans ND, Oreffo ROC. The Chorioallantoic Membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering. Sci Rep. 2016;6(April): 1–12.
  • Fredrickson TN, Sechler JMG, Palumbo GJ, et al. Acute inflammatory response to cowpox virus infection of the chorioallantoic membrane of the chick embryo. Virology. 1992;187(2):693–704.
  • Ausprunk DH, Knighton DR, Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois role of host and preexisting graft blood vessels. Am J Pathol. 1975;79(3):597–618.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;646–674. DOI:10.1016/j.cell.2011.02.013.
  • El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. BrJ Pharmacol. 2013;170(4):712–729.
  • Berg EL, Hsu YC, Lee JA. Consideration of the cellular microenvironment: physiologically relevant co-culture systems in drug discovery. Adv Drug Deliv Rev. 2014;69–70:190–204.
  • Chiew GGY, Wei N, Sultania S, et al. Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: a model system for dual analysis of tumor growth and angiogenesis. Biotechnol Bioeng. 2017;114(8):1865–1877.
  • van Duinen V, Trietsch SJ, Joore J, et al. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118–126.
  • Sung KE, Beebe DJ. Microfluidic 3D models of cancer. Adv Drug Deliv Rev. 2014;79:68–78.
  • Albanese A, Lam AK, Sykes EA, et al. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun. 2013;4(1):2718.
  • Virumbrales-Muñoz M, Ayuso JM, Olave M, et al. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Sci Rep. 2017;7(1):1–15.
  • Li W, Khan M, Mao S, et al. Advances in Tumor-Endothelial Cells Co-Culture and Interaction on Microfluidics. J Pharm Anal. 2018;8(4):210–218.
  • Comşa Ş, Ceaușu AR, Popescu R, et al. The MSC-MCF-7 duet playing tumor vasculogenesis and angiogenesis onto the chick embryo chorioallantoic membrane. In Vivo (Brooklyn). 2020;34(6):3315–3325.
  • Nowak-Sliwinska P, Segura T, Iruela-Arispe ML. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 2014;17(4):779–804.
  • Janse EM, Jeurissen SHM. Ontogeny and function of two non-lymphoid cell populations in the chicken embryo. Immunobiology. 1991;182(5):472–481.
  • Dünker N, Jendrossek V. Implementation of the chick Chorioallantoic Membrane (CAM) model in radiation biology and experimental radiation oncology research. Cancers (Basel). 2019;11(10):10.
  • Kleibeuker EA, Schulkens IAE, Castricum KCM, et al. Examination of the role of galectins during in vivo angiogenesis using the chick chorioallantoic membrane assay. Method Mol Biol. 2015;1207:305–315.
  • National Institute of Health. The public health service responds to commonly asked questions. Cited Jan 5, 2021. https://grants.nih.gov/grants/olaw/references/ilar91.htm.
  • Campbell MLH, Mellor DJ, Sandoe P. How should the welfare of fetal and neurologically immature postnatal animals be protected? Anim Welf. 2014;23(4):369–379.
  • European Parliament. Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Official J, 2010, L276, 33–79. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32010L0063&from=en (accessed on Jan 13, 2021).
  • Hamburger V, Hamilton HLA. Series of normal stages in the development of the chick embryo. J Morphol. 1951;88(3):49–92.
  • Burt DW. Chicken genome: current status and future opportunities. Genome Res. 2005;15(12):1692–1698.
  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432(7018): 695–716.
  • Kleibeuker EA, Ten Hooven MA, Castricum KC, et al. Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction. Cancer Med. 2015;4(7):1003–1015.
  • Kue CS, Tan KY, Lam ML, et al. Chick embryo Chorioallantoic Membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim. 2014;64(2):129–138.
  • Rous P, Murphy JB. Tumor implantations in the developing embryo. J Am Med Assoc. 1911;LVI(10):741.
  • Liu K, Holz JA, Ding Y, et al. Targeted labeling of an early-stage tumor spheroid in a chorioallantoic membrane model with upconversion nanoparticles. Nanoscale. 2015;7(5):1596–1600.
  • DeBord LC, Pathak RR, Villaneuva M, et al. The chick Chorioallantoic Membrane (CAM) as a versatile Patient-Derived Xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res. 1642–1660;2018(8):8.
  • Kunz P, Schenker A, Sähr H, et al. Optimization of the chicken chorioallantoic membrane assay as reliable in vivo model for the analysis of osteosarcoma. PLoS One. 2019;14(4):1–16.
  • Wittig R, Rosenholm JM, von Haartman E, et al. Active targeting of mesoporous silica drug carriers enhances γ-secretase inhibitor efficacy in an in vivo model for breast cancer. Nanomedicine. 2014;9(7):971–987.
  • Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–472.
  • Bakhoum SF, Compton DA, Instability C. Cancer: a complex relationship with therapeutic potential. J Clin Invest. 2012;122(4):1138–1143.
  • Shlien A, Malkin D. Copy number variations and cancer. Genome Med. 2009;1(6):1–9.
  • Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004;4(6):448–456.
  • Van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res - Rev Mutat Res. 2011;728(1–2):23–34.
  • Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Reports Prog Phys. 2019;82(6):6.
  • Kim J, Yu W, Kovalski K, et al. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell. 1998;94(3):353–362.
  • Zijlstra A, Mellor R, Panzarella G, et al. Analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res. 2002;62(23):7083–7092.
  • Koop S, Schmidt EE, Macdonald IC, et al. Independence of metastatic ability and extravasation: metastatic Ras-transformed and control fibroblasts extravasate equally well. Proc Natl Acad Sci U S A. 1996;93(20):11080–11084.
  • Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res. 2011;48(5):369–385.
  • Patel-Hett S, D’Amore PA. Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol. 2011;55(4–5):353–363.
  • Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22(43):6549–6556.
  • Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol. 2008;444:21–41.
  • Knighton D, Ausprunk D, Tapper D, et al. Vascular phases of tumour growth in the chick embryo. Br J Cancer. 1977;35(3):347–356.
  • Nagy J, Chang S-H, Shih S-C, et al. Heterogeneity of the Tumor Vasculature. Semin Thromb Hemost. 2010;36(3):321–331.
  • Deryugina EI. Chorioallantoic membrane microtumor model to study the mechanisms of tumor angiogenesis, vascular permeability, and tumor cell intravasation. In: Martin S, Hewett P, editors. In Angiogenesis Protocol. Vol. 1430. Human Press: New York, NY; 2016. p. 283–298.
  • Benazzi C, Al-Dissi A, Chau CH, et al. Angiogenesis in spontaneous tumors and implications for comparative tumor biology. Sci World J. 2014;2014:1–16.
  • Fergelot P, Bernhard JC, Soulet F, et al. The experimental renal cell carcinoma model in the chick embryo. Angiogenesis. 2013;16(1):181–194.
  • Baum O, Suter F, Gerber B, et al. Angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation. 2010;17(6):447–457.
  • Marinaccio C, Nico B, Ribatti D. Differential expression of angiogenic and anti-angiogenic molecules in the chick embryo chorioallantoic membrane and selected organs during embryonic development. Int J Dev Biol. 2013;57(11–12):907–916.
  • Plate KH, Breier G, Millauer B, et al. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res. 1993;53(23):5822–5827.
  • Petruzzelli GJ, Johnson JT, Snyderman CH, et al. Angiogenesis induced by head and neck squamous cell carcinoma xenografts in the chick embryo chorioallantoic membrane model. Ann Otol Rhinol Laryngol. 1993;102(3):215–221.
  • Subauste MC, Kupriyanova TA, Conn EM, et al. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastasis. 2009;26(8):1033–1047.
  • Sys G, Van Bockstal M, Forsyth R, et al. Tumor grafts derived from sarcoma patients retain tumor morphology, viability, and invasion potential and indicate disease outcomes in the chick chorioallantoic membrane model. Cancer Lett. 2012;326(1):69–78.
  • Klagsbrun M, Knighton D, Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 1976;36(1):110–114.
  • Moscatelli D, Joseph-Silverstein J, Presta M, et al. Multiple forms of an angiogenesis factor: basic fibroblast growth factor. Biochimie. 1987;70(1):83–87.
  • Brem S, Cotran R, Tumor Angiogenesis FJ, et al. Method for histologic grading. J Natl Cancer Inst. 1972;48(2):347–356.
  • Mostafa LK, Jones DB, Wright DH. Mechanism of the induction of angiogenesis by human neoplastic lymphoid tissue: studies on the Chorioallantoic Membrane (CAM) of the chick embryo. J Pathol. 1980;132(3):191–205.
  • Su SC, Lin CW, Yang WE, et al. The Urokinase-type Plasminogen Activator (UPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets. 2016;20(5):551–566.
  • Dass K, Ahmad A, Azmi AS, et al. Evolving role of UPA/UPAR system in human cancers. Cancer Treat Rev. 2008;34(2):122–136.
  • Deryugina EI, Kiosses WB. Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma. Cell Rep. 2017;19(3):601–616.
  • Deryugina EI, Zijlstra A, Partridge JJ, et al. Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res. 2005;65(23):10959–10969.
  • Zuo Z, Syrovets T, Genze F, et al. MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane. NMR Biomed. 2015;28(4):440–447.
  • Shanmugam MK, Ahn KS, Hsu A, et al. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front Pharmacol. 2018;9. DOI:10.3389/fphar.2018.01294.
  • Yousefnia S, Ghaedi K, Seyed Forootan F, et al. Characterization of the stemness potency of mammospheres isolated from the breast cancer cell lines. Tumor Biol. 2019;41:8.
  • Li Q, Cao J, He Y, et al. R5, a neutralizing antibody to robo1, suppresses breast cancer growth and metastasis by inhibiting angiogenesis via down-regulating filamin A. Exp Cell Res. 2020;387(1):111756.
  • Eder S, Arndt A, Lamkowski A, et al. Baseline MAPK signaling activity confers intrinsic radioresistance to KRAS-mutant colorectal carcinoma cells by rapid upregulation of heterogeneous nuclear ribonucleoprotein K (HnRNP K). Cancer Lett. 2017;385:160–167.
  • Dumartin L, Quemener C, Laklai H, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;137(4):1595–1606.
  • Mesci A, Lucien F, Huang X, et al. RSPO3 is a prognostic biomarker and mediator of invasiveness in prostate cancer. J Transl Med. 2019;17(1):125.
  • Hagedorn M, Javerzat S, Gilges D, et al. Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci U S A. 2005;102(5):1643–1648.
  • Swadi R, Mather G, Pizer BL, et al. Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery. BMC Cancer. 2018;18(1):28.
  • Klingenberg M, Becker J, Eberth S, et al. The chick chorioallantoic membrane as an in vivo xenograft model for burkitt lymphoma. BMC Cancer. 2014;14(1):339.
  • Xiao X, Zhou X, Ming H, et al. Chick chorioallantoic membrane assay: a 3D animal model for study of human nasopharyngeal carcinoma. PLoS One. 2015;10(6):1–13.
  • Schneider-Stock R, Ribatti D. The CAM assay as an alternative in vivo model for drug testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020:1–21. DOI:10.1007/164_2020_375.
  • Leng T, Miller JM, V; Palanker BK, et al. Chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retina. 2004;24(3):427–434.
  • Jefferies B, Lenze F, Sathe A, et al. Imaging of engineered human tumors in the living chicken embryo. Sci Rep. 2017;7(1):1–9.
  • Winter G, Koch ABF, Löffler J, et al. Vivo PET/MRI imaging of the chorioallantoic membrane. Front Phys. 2020;8. DOI:10.3389/fphy.2020.00151.
  • Warnock G, Turtoi A, Blomme A, et al. Vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development. J Nucl Med. 2013;54(10):1782–1788.
  • Winter G, Koch ABF, Loffler J, et al. PET and MR imaging in the Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) model for initial in vivo testing of target-specific radioligands. Cancers (Basel). 2020;12(5):5.
  • Waschkies C, Nicholls F, Buschmann J. Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick embryos for in ovo magnetic resonance imaging free of motion artifacts. Sci Rep. 2015;5(1):15536.
  • Lin B, Song X, Yang D, et al. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRbeta and FGFR1. Gene. 2018;654:77–86.
  • Zhong L, Guo X-N, Zhang X-H, et al. TKI-31 inhibits angiogenesis by combined suppression signaling pathway of VEGFR2 and PDGFRbeta. Cancer Biol Ther. 2014;5(3):323–330.
  • Sunitinib MC. Resistance in Renal Cell Carcinoma. J Kidney Cancer VHL. 2014;1(1):1.
  • Mulet-Margalef N, Garcia-Del-Muro X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. Onco Targets Ther. 2016;9:7573–7582.
  • Pozas M, San Roman M, Alonso-Gordoa T, et al. Angiogenesis in pancreatic neuroendocrine tumors: resistance mechanisms. Int J Mol Sci. 2019;20(19):19.
  • D’Costa NM, Lowerison MR, Raven PA, et al. Y-box binding protein-1 is crucial in acquired drug resistance development in metastatic clear-cell renal cell carcinoma. J Exp Clin Cancer Res. 2020;39(1):33.
  • Cîmpean AM, Lalošević D, Lalošević V, et al. Disodium cromolyn and anti-podoplanin antibodies strongly inhibit growth of BHK 21/C13-derived fibrosarcoma in a chick embryo chorioallantoic membrane model. In Vivo (Brooklyn). 2018;32(4):791–798.
  • Ferician O, Cimpean AM, Avram S, et al. Endostatin effects on tumor cells and vascular network of human renal cell carcinoma implanted on chick embryo chorioallantoic membrane. Anticancer Res. 2015;35(12):6521–6528.
  • Venkatesulu BP, Mahadevan LS, Aliru ML, et al. Vascular injury: a review of possible mechanisms. JACC Basic Transl Sci. 2018;3(4):563–572.
  • Baselet B, Sonveaux P, Baatout S, et al. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci. 2019;76(4):699–728.
  • Sharma RA, Plummer R, Stock JK, et al. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol. 2016;13(10):627–642.
  • Dahl O, Dale JE, Brydoy M. Rationale for combination of radiation therapy and immune checkpoint blockers to improve cancer treatment. Acta Oncol. 2019;58(1):9–20.
  • Yuan YJ, Xu K, Wu W, et al. Application of the chick embryo chorioallantoic membrane in neurosurgery disease. Int J Med Sci. 2014;11(12):1275–1281.
  • Kähler J, Hafner S, Popp T, et al. Heterogeneous nuclear ribonucleoprotein K is overexpressed and contributes to radioresistance irrespective of HPV status in head and neck squamous cell carcinoma. Int J Mol Med. 2020;46(5):1733–1742.
  • Abe C, Uto Y, Nakae T, et al. Evaluation of the in vivo radiosensitizing activity of etanidazole using tumor-bearing chick embryo. J Radiat Res. 2011;52(2):208–214.
  • Dörr W. Pathogenesis of normal tissue side effects. In: Joiner MC, Van der Kogel AJ, editors. Basic clinical radiobiology. Taylor & Francis, Boca Raton, FL; 2018. pp. 152–170.
  • Karnabatidis D, Dimopoulos JCA, Siablis D, et al. Quantification of the ionising radiation effect over angiogenesis in the chick embryo and its chorioallantoic membrane by computerised analysis of angiographic images. Acta Radiol. 2001;42(3):333–338.
  • Sabatasso S, Laissue JA, Hlushchuk R, et al. Tissue damage depends on the stage of vascular maturation. Int J Radiat Oncol Biol Phys. 2011;80(5):1522–1532.
  • Marques FG, Poli E, Rino J, et al. Low doses of ionizing radiation enhance the angiogenic potential of adipocyte conditioned medium. Radiat Res. 2019;192(5):517–526.
  • Kardamakis D, Hadjimichael C, Ginopoulos P, et al. Effects of paclitaxel in combination with ionizing radiation on angiogenesis in the chick embryo chorioallantoic membrane. a radiobiological study. Strahlenther Onkol. 2004;180(3):152–156.
  • Mahvi DA, Liu R, Grinstaff MW, et al. Local cancer recurrence: the realities, challenges, and opportunities for new therapies. CA Cancer J Clin. 2018;68(6):488–505.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387.
  • Cassano D, Pocoví-Martínez S, Ultrasmall-in-Nano Approach VV. Enabling the translation of metal nanomaterials to clinics. Bioconjug Chem. 2018;29(1):4–16.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951.
  • Bouchoucha M, Côté MF, Gaudreault C, et al. Mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chem Mater. 2016;28(12):4243–4258.
  • Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol. 2011;22(6):901–908.
  • Shukla S, Ablack AL, Wen AM, et al. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Mol Pharm. 2013;10(1):33–42.
  • Cho CF, Ablack A, Leong HS, et al. Evaluation of nanoparticle uptake in tumors in real time using intravital imaging. J Vis Exp. 2011;No. 52:7–11. DOI:10.3791/2808.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Tenzer S, Docter D, Kuharev J, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–781.
  • Lunov O, Syrovets T, Loos C, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5(3):1657–1669.
  • Loos C, Syrovets T, Musyanovych A, et al. Nanoparticles as Inhibitors of MTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials. 2014;35(6):1944–1953.
  • Medinger M, Passweg J. Angiogenesis in myeloproliferative neoplasms, new markers and future directions Memo - Mag. Eur Med Oncol. 2014;7(4):206–210.
  • Han Y, Wang X, Wang B, et al. The Progress of Angiogenic Factors in the Development of Leukemias. Intractable Rare Dis Res. 2016;5(1):6–16.
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–784.
  • Chen Y, Tezcan O, Li D, et al. Overcoming multidrug resistance using folate receptor-targeted and PH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale. 2017;9(29):10404–10419.
  • Steinmetz NF, Ablack AL, Hickey JL, et al.,Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors, Small, 2011; 7 ;12, 1664–1672.
  • Niemelä E, Desai D, Niemi R, et al. Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. Eur J Pharm Biopharm. Dec 2019;2020(148):1–9.
  • Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. BioMetals. 2016;29(3):365–376.
  • Zuo Z, Syrovets T, Wu Y, et al. The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds. Sci Rep. 2017;7(1):46690.
  • Faucher L, Guay-Bégin AA, Lagueux J, et al. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging. 2011;6(4):209–218.
  • Corem-Salkmon E, Perlstein B, Margel S. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer. Int J Nanomedicine. 2012;7:5517–5527.
  • Jendželovská Z, Jendželovský R, Kuchárová B, et al. Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci. 2016;7:1–20.
  • Zeisser-Labouèbe M, Delie F, Gurny D, et al. Screening of nanoparticulate delivery systems for the photodetection of cancer in a simple and cost-effective model. Nanomedicine. 2009;4(2):135–143.
  • Voliani V, González-Béjar M, Herranz-Pérez V, et al. Orthogonal functionalisation of upconverting NaYF4 nanocrystals. Chem Eur J. 2013;19(40):13538–13546.
  • Wang M, Abbineni G, Clevenger A, et al. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med. 2011;7(6):710–729.
  • Grodzik M, Sawosz E, Wierzbicki M, et al. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int J Nanomedicine. 2011;6:3041.
  • Urbańska K, Pająk B, Orzechowski A, et al. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured Glioblastoma Multiforme (GBM) cells. Nanoscale Res Lett. 2015;10(1):1.
  • Kutwin M, Sawosz E, Jaworski S, et al. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch Med Sci. 2017;13(6):1322–1334.
  • Liu LZ, Ding M, Zheng JZ, et al. Tungsten carbide-cobalt nanoparticles induce reactive oxygen species, AKT, ERK, AP-1, NF-ΚB, VEGF, and Angiogenesis. Biol Trace Elem Res. 2015;166(1):57–65.
  • Vargas A, Pegaz B, Debefve E, et al. Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int J Pharm. 2004;286(1–2):131–145.
  • Cassano D, Santi M, Cappello V, et al. Biodegradable passion fruit-like nano-architectures as carriers for cisplatin prodrug part. Part Syst Charact. 2016;33(11):818–824.
  • Mapanao AK, Santi M, Faraci P, et al. Endogenously-triggerable ultrasmall-in-nano architectures: targeting assessment on 3D pancreatic carcinoma spheroids. ACS Omega. 2018;3(9):11796–11801.
  • Bikhezar F, de Kruijff RM, van der Meer AJGM, et al. Preclinical evaluation of binimetinib (MEK162) delivered via polymeric nanocarriers in combination with radiation and temozolomide in glioma. J Neurooncol. 2020;146(2):239–246.
  • Barenholz Y. (Chezy). Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134.
  • Vu BT, Shahin SA, Croissant J, et al. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci Rep. 2018;8(1):8524.
  • Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, Davis FB, Davis PJ, Mousa SA. Tetraidothyroacetic acid (Tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 2009;29(10):3825–3831.
  • Paris JL, Villaverde G, Gómez-Graña S, et al. Nanoparticles for multimodal antivascular therapeutics: dual drug release, photothermal and photodynamic therapy. Acta Biomater. 2020;101:459–468.
  • Elsadek B, Kratz F. Impact of albumin on drug delivery - new applications on the horizon. J Control Release. 2012;157(1):4–28.
  • Hafner S, Raabe M, Wu Y, et al. Resonance imaging and efficient delivery of an albumin nanotheranostic in triple‐Negative breast cancer xenografts. Adv Ther. 2019;2(11):1900084.
  • Garrier J, Reshetov V, Gräfe S, et al. Factors affecting the selectivity of nanoparticle-based photoinduced damage in free and xenografted chorioallantoic membrane model. J Drug Target. 2014;22(3):220–231.
  • Riley II M, Vermerris W. Recent advances in nanomaterials for gene delivery—A review. Nanomaterials. 2017;7(5):94.
  • Masjedi A, Ahmadi A, Atyabi F, et al. Silencing of IL-6 and STAT3 by SiRNA loaded hyaluronate-N,N,N-trimethyl chitosan nanoparticles potently reduces cancer cell progression. Int J Biol Macromol. 2020;149:487–500.
  • Kilarski WW, Samolov B, Petersson L, et al. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med. 2009;15(6):657–664.
  • Zudaire E, Gambardella L, Kurcz C, et al. Tool for quantitative analysis of vascular networks. PLoS One. 2011;6(11):1–12.
  • Ribatti D, Nico B, Perra MT, et al. Erythropoietin is involved in angiogenesis in human primary melanoma. Int J Exp Pathol. 2010;91(6):495–499.
  • Beckers M, Gladis-Villanueva M, Hamann W, et al. Use of the chorio-allantoic membrane of the chick embryo as test for anti-inflammatory activity. Inflamm Res. 1997;46(1):29–30.
  • Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. 80 Science. 2003;300(5616):82–86.
  • Pink DBS, Schulte W, Parseghian MH, et al. Quantitation of vascular permeability in vivo: implications for drug delivery. PLoS One. 2012;7(3):1–10.
  • Jilani SM, Murphy TJ, Thai SNM, et al. Selective binding of lectins to embryonic chicken vasculature. J Histochem Cytochem. 2003;51(5):597–604.
  • Vargas A, Eid M, Fanchaouy M, et al. In vivo photodynamic activity of photosensitizer-loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome. Eur J Pharm Biopharm. 2008;69(1):43–53.
  • Mamaeva V, Niemi R, Beck M, et al. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol Ther. 2016;24(5):926–936.
  • Nowak-Sliwinska P, Alitalo K, Allen E, et al., Consensus guidelines for the use and interpretation of angiogenesis assays, Angiogenesis 2018:Vol. 21, DOI:10.1007/s10456-018-9613-x.
  • Leong HS, Steinmetz NF, Ablack A, et al. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc. 2010;5(8):1406–1417.
  • Jonkman J, Brown CM. Any way you slice it—A comparison of confocal microscopy techniques. J Biomol Tech. 2015;26(2):54–65.
  • MacDonald IC, Schmidt EE, Morris VL, et al. Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. Microvasc Res. 1992;44(2):185–199.
  • Wilcox JN. Fundamental principles of in situ hybridization. J Histochem Cytochem. 1993;41(12):1725–1733.
  • Javerzat S, Franco M, Herbert J, et al. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS One. 2009;4(11):11.
  • Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab. 1999;67(3):183–193.
  • Wierzbicki M, Sawosz E, Grodzik M, et al. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res Lett. 2013;8(1):1–8.
  • Deryugina EI, Bourdon MA, Reisfeld RA, et al. Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer Res. 1998;58(16):3743–3750.
  • Büchele B, Zugmaier W, Genze F, et al. High-performance liquid chromatographic determination of acetyl-11-Keto-α-boswellic acid, a novel pentacyclic triterpenoid, in plasma using a fluorinated stationary phase and photodiode array detection: application in pharmacokinetic studies. J Chromatogr B Anal Technol Biomed Life Sci. 2005;829(1–2):144–148.
  • Honda N, Kariyama Y, Hazama H, et al. Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: tumor model to assay of tumor response to photodynamic therapy. J Biomed Opt. 2015;20(12):125001.
  • Fotinos N, Campo MA, Popowycz F, et al. 5-aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol. 2006;82(4):994.
  • DuFort CC, DelGiorno KE, Hingorani SR. Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology. 2016;150(7):1545–1557 e2.
  • Schnittert J, Bansal R, Prakash J. Targeting pancreatic stellate cells in cancer. Trends Cancer. 2019;5(2):128–142.
  • Soulet F, Kilarski WW, Roux-Dalvai F, et al. Mapping the extracellular and membrane proteome associated with the vasculature and the stroma in the embryo. Mol Cell Proteomics. 2013;12(8):2293–2312.
  • Giannopoulou E, Katsoris P, Hatziapostolou M, et al. Extracellular matrix in vivo. Int J Cancer. 2001;94(5):690–698.
  • Papadimitriou E, Unsworth BR, Maragoudakis ME, et al. Quantification of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium. 1993;1(3):207–219.
  • Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–186.
  • Schneiderhan W, Diaz F, Fundel M, et al. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci. 2007;120(Pt 3):512–519.
  • Chojnacka-Puchta L, Sawicka D CRISPR/Cas9 gene editing in a chicken model: current approaches and applications. Journal of Applied Genetics. 2020;61:221–229. DOI:10.1007/s13353-020-00537-9.
  • Sid H, Schusser B Applications of gene editing in chickens: a new era is on the horizon. Frontiers in Genetics. 2018;9:456. DOI:10.3389/fgene.2018.00456.