359
Views
2
CrossRef citations to date
0
Altmetric
Review

Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it

&
Pages 1075-1090 | Received 26 Mar 2021, Accepted 21 Jul 2021, Published online: 06 Aug 2021

References

  • Moshé SL, Perucca E, Ryvlin P, et al. Epilepsy: new advances. Lancet. 2015;385(9971):884‒898.
  • Janmohamed M, Brodie MJ, Kwan P, et al. Pharmacoresistance - epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020;168:107790.
  • Tang F, Hartz AMS, Bauer B, et al. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol. 2017;8:301.
  • Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51:1069‒1077.
  • Kwan P, Brodie MJ. Epilepsy after the first drug fails: substitution or add-on?. Seizure. 2000;9(7):464‒468.
  • Deckers CL, Czuczwar SJ, Hekster YA, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia. 2000;41(11):1364‒1374.
  • Billakota S, Devinsky O, Kim KW, et al. Why we urgently need improved epilepsy therapies for adult patients. Neuropharmacology. 2020;170:107855.
  • Barker-Haliski M, White HS. Validated animal models for antiseizure drug (ASD) discovery: advantages and potential pitfalls in ASD screening. Neuropharmacology. 2020;167:107750.
  • Löscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res. 2016;126:157‒184.
  • Potschka H. Animal models of drug-resistant epilepsy. Epileptic Disord. 2012;14(3):226–234.
  • Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359‒368.
  • Riban V, Bouilleret V, Pham-Lê BT, et al. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience. 2002;112(1):101–111.
  • Barton ME, Klein BD, Wolf HH, et al. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001;47(3):217‒227.
  • Kwan P, Schachter SC, Brodie MJ, et al. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919‒926.
  • Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003;53(4):469‒479.
  • Remy S, Urban BW, Elger CE, et al. Anticonvulsant pharmacology of voltage-gated Na + channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neurosci. 2003;17(12):2648‒2658.
  • Vreugdenhil M, van Veelen CW, van Rijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res. 1998;32(1–2):309‒320.
  • Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia. 1999;40(11):1512‒1522.
  • Schmidt D, Löscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia. 2005;46(6):858‒877.
  • Löscher W, Potschka H, Sisodiya SM, et al., Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72(3): 606‒638.
  • Ferraro TN, Buono RJ. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy Behav. 2005;7(1):18‒36.
  • Kwan P, Poon WS, Ng HK, et al. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics. 2008;18(11):989‒998.
  • Catterall WA, Goldin AL, Waxman SG, et al. International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397‒409.
  • Macdonald RL, Kapur J. Acute cellular alterations in the hippocampus after status epilepticus. Epilepsia. 1999;40(Suppl. s1):S9‒S20.
  • Jones DM, Esmaeil N, Maren S, et al. Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Res. 2002;50(3):301‒312.
  • Sisodiya SM, Martinian L, Scheffer GL, et al. Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol. 2006;32(1):51‒63.
  • Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76:22‒76.
  • Sisodiya SM, Martinian L, Scheffer GL, et al. Major vault protein, a marker of drug resistance, is upregulated in refractory epilepsy. Epilepsia. 2003;44(11):1388‒1396.
  • Tishler DM, Weinberg KI, Hinton DR, et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36(1):1‒6.
  • Dombrowski SM, Desai SY, Marroni M, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia. 2001;42(12):1501‒1506.
  • Aronica E, Sisodiya SM, Gorter JA, et al. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev. 2012;64(10):919‒929.
  • Stępień KM, Tomaszewski M, Tomaszewska J, et al. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep. 2012;64(5):1011‒1019.
  • Sisodiya SM, Heffernan J, Squier MV, et al. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport. 1999;10(16):3437–3441.
  • Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia. 2013;54(Suppl 2):33‒40.
  • Luna-Tortós C, Fedrowitz M, Löscher W, et al. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55(8):1364‒1375.
  • Feldmann M, Asselin MC, Liu J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 2013;12(8):777‒7785.
  • Luna-Tortós C, Rambeck B, Jürgens UH, et al. The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm Res. 2009;26(11):2464‒2470.
  • Gidal BE. P-glycoprotein expression and pharmacoresistant epilepsy: cause or consequence?. Epilepsy Curr. 2014;14(3):136‒138.
  • Lazarowski A, Czornyj L, Lubienieki F, et al. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007;48(Suppl s5):140‒149.
  • Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008;8(5):127‒130.
  • Löscher W, Brandt C. High seizure frequency prior to antiepileptic treatment is a predictor of pharmacoresistant epilepsy in a rat model of temporal lobe epilepsy. Epilepsia. 2010;51:89‒97.
  • Fang M, Xi ZQ, Wu Y, et al. A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses. 2011;76(6):871‒876.
  • Dagenais R, Wilby KJ, Elewa H, et al. Impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in the Middle East and North Africa Region. Drugs R D. 2017;17(3):341‒361.
  • Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005;102(15):5507‒5512.
  • Abe T, Seo T, Ishitsu T, et al. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br J Clin Pharmacol. 2008;66(2):304‒307.
  • Depondt C. The potential of pharmacogenetics in the treatment of epilepsy. Eur J Paediatr Neurol. 2006;10(2):57‒65.
  • Gambardella A, Labate A, Mumoli L, et al. Role of pharmacogenomics in antiepileptic drug therapy: current status and future perspectives. Curr Pharm Des. 2017;23:5760‒5765.
  • Vezzani A, Aronica E, Mazarati A, et al. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11‒21.
  • Mantegazza R, Bernasconi P, Baggi F, et al. Antibodies against GluR3 peptides are not specific for rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol. 2002;131(1–2):179‒185.
  • Rogers SW, Andrews PI, Gahring LC, et al. Autoantibodies to glutamate receptor GluR3 in rasmussen’s encephalitis. Science. 1994;265(5172):648‒651.
  • Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J. 2008;49(1):1‒18.
  • Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31‒40.
  • Vezzani A, Balosso S, Ravizza T, et al. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008;22(6):797‒803.
  • Löscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013;12(10):757‒776.
  • Lee TS, Mane S, Eid T, et al. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med. 2007;13(1–2):1‒13.
  • Foresti ML, Arisi GM, Katki K, et al. Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilocarpine-induced status epilepticus. J Neuroinflammation. 2009;6(1):40.
  • Li R, Ma L, Huang H, et al. Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res. 2017;42(2):526‒540.
  • Maroso M, Balosso S, Ravizza T, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16(4):413‒419.
  • Rawat C, Kukal S, Dahiya UR, et al. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation. 2019;16(1):197.
  • Tu B, Bazan NG. Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol. 2003;179:167‒175.
  • Takemiya T, Suzuki K, Sugiura H, et al. Inducible brain COX-2 facilitates the recurrence of hippocampal seizures in mouse rapid kindling. Prostaglandins Other Lipid Mediat. 2003;71(3–4):205‒216.
  • Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies?. Epilepsia. 2010;51(8):1333‒1347.
  • Fabene PF, Laudanna C, Constantin G, et al. Leukocyte trafficking mechanisms in epilepsy. Mol Immunol. 2013;55(1):100‒104.
  • Fabene PF, Navarro Mora G, Martinello M, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008;14(12):1377–1383.
  • Terrone G, Balosso S, Pauletti A, et al. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology. 2020;167:107742.
  • Eastman CL, D’Ambrosio R, Ganesh T, et al. Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology. 2020;172:107907.
  • Aguiar CC, Almeida AB, Araújo PV, et al. Oxidative stress and epilepsy: literature review. Oxid Med Cell Longev. 2012;2012:795259.
  • Sudha K, Rao AV, Rao A, et al. Oxidative stress and antioxidants in epilepsy. Clin Chim Acta. 2001;303(1–2):19‒24.
  • Löscher W, Friedman A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both?. Int J Mol Sci. 2020;21(2):591.
  • Salar S, Maslarova A, Lippmann K, et al. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia. 2014;55(8):1255‒1263.
  • Crino PB. Mechanistic target of rapamycin (mTOR) signaling in status epilepticus. Epilepsy Behav. 2019;101(Pt B):106550.
  • Zavala-Tecuapetla C, Cuellar-Herrera M, Luna-Munguia H, et al. Insights into potential targets for therapeutic intervention in epilepsy. Int J Mol Sci. 2020;21(22):8573.
  • Talos DM, Jacobs LM, Gourmaud S, et al. Mechanistic target of rapamycin complex 1 and 2 in human temporal lobe epilepsy. Ann Neurol. 2018;83(2):311‒327.
  • Ryther RC, Wong M. Mammalian target of rapamycin (mTOR) inhibition: potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr Neurol Neurosci Rep. 2012;12(4):410‒418.
  • Almeida SS, Naffah-Mazzacoratti MG, Guimarães PB, et al. Carbamazepine inhibits angiotensin I-converting enzyme, linking it to the pathogenesis of temporal lobe epilepsy. Transl Psychiatry. 2012;2(3):e93.
  • Pereira MG, Becari C, Oliveira JA, et al. Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci (Lond). 2010;119(11):477‒482.
  • Argañaraz GA, Konno AC, Perosa SR, et al. The renin-angiotensin system is upregulated in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis. Epilepsia. 2008;49(8):1348‒1357.
  • Szczurkowska PJ, Polonis K, Becari C, et al. Epilepsy and hypertension: the possible link for SUDEP?. Cardiol J. 2019 Sep 30. DOI:https://doi.org/10.5603/CJ.a2019.0095.
  • Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat. 2016;12:2605‒2616.
  • Keezer MR, Sisodiya SM, Sander JW, et al. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 2016;15(1):106‒115.
  • Galovic M, Ferreira-Atuesta C, Abraira L, et al. Seizures and epilepsy after stroke: epidemiology, biomarkers and management. Drugs Aging. 2021 Feb 23;(4). DOI: https://doi.org/10.1007/s40266-021-00837-7.
  • Samanen J. Chapter 5 - Similarities and differences in the discovery and use of biopharmaceuticals and small-molecule chemotherapeutics. In: Ganellin R, Jefferis SR, editors. Introduction to Biological and Small Molecule Drug Research and Development. Elsevier; Amsterdam, 2013. p. 161–203.
  • Greco M, Varriale G, Coppola G, et al. Investigational small molecules in phase II clinical trials for the treatment of epilepsy. Expert Opin Investig Drugs. 2018;27(12):971‒979.
  • Brodie MJ. Tolerability and safety of commonly used antiepileptic drugs in adolescents and adults: a clinician’s overview. CNS Drugs. 2017;31(2):135‒147.
  • Smith M, Wilcox KS, White HS, et al. Discovery of antiepileptic drugs. Neurotherapeutics. 2007;4(1):12‒17.
  • Wilcox KS, West PJ, Metcalf CS, et al. The current approach of the epilepsy therapy screening program contract site for identifying improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology. 2020;166:107811.
  • Metcalf CS, West PJ, Thomson KE, et al. Development and pharmacologic characterization of the rat 6 Hz model of partial seizures. Epilepsia. 2017;58(6):1073‒1084.
  • Schmidt D, Löscher W. New developments in antiepileptic drug resistance: an integrative view. Epilepsy Curr. 2009;9(2):47‒52.
  • van Vliet EA, van Schaik R, Edelbroek PM, et al. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia. 2006;47(4):672‒680.
  • Bialer M. New antiepileptic drugs that are second generation to existing antiepileptic drugs. Expert Opin Investig Drugs. 2006;15(6):637‒647.
  • Perucca E, French J, Bialer M, et al. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 2007;6(9):793‒804.
  • Łukawski K, Gryta P, Łuszczki J, et al. Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin Drug Discov. 2016;11(4):369‒382.
  • Vezzani A, Balosso S, Ravizza T, et al. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15(8):459‒472.
  • Yu N, Liu H, Di Q, et al. Modulation of immunity and the inflammatory response: a new arget for treating drug-resistant epilepsy. Curr Neuropharmacol. 2013;11:114‒127.
  • Cardenas-Rodriguez N, Huerta-Gertrudis B, Rivera-Espinosa L, et al. Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci. 2013;14(1):1455‒1476.
  • Griffith JL, Wong M. The mTOR pathway in treatment of epilepsy: a clinical update. Future Neurol. 2018;13(2):49‒58.
  • Gomes KP, Braga PPP, De Lima CQ, et al. Antiepileptic effects of long-term intracerebroventricular infusion of angiotensin-(1-7) in an animal model of temporal lobe epilepsy. Clin Sci (Lond). 2020;134(17):2263‒2277.
  • Bar-Klein G, Cacheaux LP, Kamintsky L, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol. 2014;75(6):864‒875.
  • Helbig I, Ellis CA. Personalized medicine in genetic epilepsies - possibilities, challenges, and new frontiers. Neuropharmacology. 2020;172:107970.
  • Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010;9(1):68‒82.
  • Łukawski K, Czuczwar SJ. Developing precision treatments for epilepsy using patient and animal models. Expert Rev Neurother. 2020;29:1‒10.
  • French JA, Faught E. Rational polytherapy. Epilepsia. 2009;50(Suppl 8):63–68.
  • Holmes M, Flaminio Z, Vardhan M, et al. Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia. 2020;61(12):2619‒2628.
  • Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions. Expert Rev Neurother. 2006;6(3):397‒406.
  • Vaccarezza MM, Silva WH. Dietary therapy is not the best option for refractory nonsurgical epilepsy. Epilepsia. 2015;56(9):1330–1334.
  • Lieb A, Qiu Y, Dixon CL, et al. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med. 2018;24(9):1324‒1329.
  • Fisher RS, Ho J. Potential new methods for antiepileptic drug delivery. CNS Drugs. 2002;16(9):579‒593.
  • Kullmann DM, Schorge S, Walker MC, et al. Gene therapy in epilepsy-is it time for clinical trials?. Nat Rev Neurol. 2014;10(5):300‒304.
  • Doeser A, Dickhof G, Reitze M, et al. Targeting pharmacoresistant epilepsy and epileptogenesis with a dual-purpose antiepileptic drug. Brain. 2015;138(2):371–387.
  • Wang J, Chen Y, Wang Q, et al. The effects of lamotrigine and ethosuximide on seizure frequency, neuronal loss, and astrogliosis in a model of temporal-lobe epilepsy. Brain Res. 2019;1712:1–6.
  • Schidlitzki A, Bascuñana P, Srivastava PK, et al. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis. 2020;134:104664.
  • St Louis EK. Truly “Rational” polytherapy: maximizing efficacy and minimizing drug interactions, drug load, and adverse effects. Curr Neuropharmacol. 2009;7(2):96–105.
  • Kwan P, Brodie MJ. Epilepsy after the first drug fails: substitution or add-on?. Seizure. 2000;9(7):464–468.
  • Jonker DM, Voskuyl RA, Danhof M, et al. Synergistic combinations of anticonvulsant agents: what is the evidence from animal experiments?. Epilepsia. 2007;48(3):412–434.
  • Błaszczyk B, Miziak B, Czuczwar P, et al. A viewpoint on rational and irrational fixed-drug combinations. Expert Rev Clin Pharmacol. 2018;11(8):761–771.
  • Barker-Haliski M, Sills GJ, White HS, et al. What are the arguments for and against rational therapy for epilepsy?. In: Scharfman HE, Buckmaster PS, editors. Issues in clinical epileptology: a view from the bench. Dordrecht: Springer Science; 2014. p. 295–308.
  • Asadi-Pooya AA, Razavizadegan SM, Abdi-Ardekani A, et al. Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav. 2013;29(1):150‒154.
  • Borlot F, Wither RG, Ali A, et al. A pilot double-blind trial using verapamil as adjuvant therapy for refractory seizures. Epilepsy Res. 2014;108(9):1642‒1651.
  • Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci. 2002;22(14):5833–5839.
  • Meng T, Xiao D, Muhammed A, et al. Anti-Inflammatory action and mechanisms of resveratrol. Molecules. 2021;26(1):229.
  • Aldini G, Altomare A, Baron G, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751–762.
  • Enatsu R, Wylie E, Kotagal P, et al. Surgically proven coexistence of focal and generalized epilepsy: a case report. Epilepsy Behav. 2013;26(1):61–63.
  • Amin U, Benbadis SR. Two epilepsy types (not seizure types) in the same patient: a rare but interesting occurrence. Eur Neurol. 2020;83(1):89–90.
  • Benbadis SR, Tatum WO 4th, Gieron M, et al. Idiopathic generalized epilepsy and choice of antiepileptic drugs. Neurology. 2003;61(12):1793–1795.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.