220
Views
1
CrossRef citations to date
0
Altmetric
Original Research

A Quantitative Approach to the Prediction of Drug-Drug Interactions Mediated by Cytochrome P450 2C8 Inhibition

, , ORCID Icon &
Pages 1345-1352 | Received 18 Apr 2021, Accepted 22 Oct 2021, Published online: 02 Nov 2021

References

  • Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome P450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos. 2014;42(8):1349–1356.
  • Backman JT, Filppula AM, Niemi M, et al. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.
  • Tornio A, Backman JT. Cytochrome P450 in pharmacogenetics: an update. In: Advances in Pharmacology. San Diego, CA: Academic Press Inc; 2018. p. 3–32.
  • Quintieri L, Palatini P, Moro S, et al. Inhibition of cytochrome P450 2C8-mediated drug metabolism by the flavonoid diosmetin. Drug Metab Pharmacokinet. 2011;26(6):559–568.
  • Park SY, Nguyen PH, Kim G, et al. Strong and selective inhibitory effects of the biflavonoid selamariscina a against CYP2C8 and CYP2C9 enzyme activities in human liver microsomes. Pharmaceutics. 2020;12(4):4.
  • Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–148.
  • Sager JE, Yu J, Ragueneau-Majlessi I, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches a systematic review of published models, applications, and model verification. Drug metabolism and disposition. J Pharmacol Exp Ther. 2015;43:1823–1837.
  • Fahmi OA, Hurst S, Plowchalk D, et al. Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos. 2009;37(8):1658–1666.
  • Li R, Barton HA, Varma MV. Prediction of pharmacokinetics and drug-drug interactions when hepatic transporters are involved. Clin Pharmacokinet. 2014;53(8):659–678.
  • Naritomi Y, Terashita S, Kimura S, et al. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos. 2001;29(10):1316–1324.
  • Bowman CM, Benet LZ. In vitro-in vivo extrapolation and hepatic clearance-dependent underprediction. J Pharm Sci. 2019;108(7):2500–2504.
  • Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos. 2017;45(11):1178–1188.
  • Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–696.
  • Ohno Y, Hisaka A, Ueno M, et al. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–680.
  • Rossenu S, Del Bene F, Vermeulen A, et al. Modelling potential drug-drug interaction (DDI) risks with a combined top-down/bottom-up approach PAGE 24; 2015 June 2–5; Hersonissos, Crete (Greece); Abstr 3560
  • Tod M, Goutelle S, Clavel-Grabit F, et al. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50(8):519–530.
  • Goutelle S, Bourguignon L, Bleyzac N, et al. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15(2):415–426.
  • Castellan AC, Tod M, Gueyffier F, et al. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52(3):199–209.
  • Gabriel L, Tod M, Goutelle S. Quantitative Prediction of Drug Interactions Caused by CYP1A2 Inhibitors and Inducers. Clin Pharmacokinet. 2016;55(8):977–990.
  • Tod M, Bourguignon L, Bleyzac N, et al. Quantitative prediction of interactions mediated by transporters and cytochromes: application to organic anion transporting polypeptides, breast cancer resistance protein and cytochrome 2C8. Clin Pharmacokinet. 2020;59(6):757–770.
  • Hachad H, Ragueneau-Majlessi I, Levy RH. A useful tool for drug interaction evaluation: the university of Washington metabolism and transport drug interaction database. Hum Genomics. 2010;5(1):61–72.
  • Johnson BM, Stier BA, Caltabiano S. Effect of food and gemfibrozil on the pharmacokinetics of the novel prolyl hydroxylase inhibitor GSK1278863. Clin Pharmacol Drug Dev. 2014;3(2):109–117.
  • Menon RM, Badri PS, Wang T, et al. Drug-drug interaction profile of the all-oral anti-hepatitis C virus regimen of paritaprevir/ritonavir, ombitasvir, and dasabuvir. J Hepatol. 2015;63(1):20–29.
  • Honkalammi J, Niemi M, Neuvonen PJ, et al. Dose-dependent interaction between gemfibrozil and repaglinide in humans: strong inhibition of CYP2C8 with subtherapeutic gemfibrozil doses. Drug Metab Dispos. 2011;39(10):1977–1986.
  • Backman JT, Kyrklund C, Neuvonen M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther. 2002;72(6):685–691.
  • Aquilante CL, Kosmiski LA, Bourne DWA, et al. Impact of the CYP2C8 *3 polymorphism on the drug-drug interaction between gemfibrozil and pioglitazone. Br J Clin Pharmacol. 2013;75(1):217–226.
  • Gibbons JA, de Vries M, Krauwinkel W, et al. Pharmacokinetic Drug Interaction Studies with Enzalutamide. Clin Pharmacokinet. 2015;54(10):1057–1069.
  • Karonen T, Filppula A, Laitila J, et al. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2c8 in the metabolism of montelukast. Clin Pharmacol Ther. 2010;88(2):223–230.
  • Backman JT, Kyrklund C, Kivistö KT, et al. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther. 2000;68(2):122–129.
  • Niemi M, Backman JT, Granfors M, et al. Gemfibrozil considerably increases the plasma concentrations of rosiglitazone. Diabetologia. 2003;46(10):1319–1323.
  • Niemi M, Tornio A, Pasanen MK, et al. Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide. Eur J Clin Pharmacol. 2006;62(6):463–472.
  • Centre for drug evaluation and research: Clinical pharmacology and biopharmaceutics review(s): Tyvaso. 2009. [cited 2021 Apr 06]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022387s000ClinPharmR.pdf
  • Suttle AB, Grossmann KF, Ouellet D, et al. Assessment of the drug interaction potential and single- and repeat-dose pharmacokinetics of the BRAF inhibitor dabrafenib. J Clin Pharmacol. 2015;55(4):392–400.
  • Arun KP, Meda VS, Raj Kucherlapati VSP, et al. Pharmacokinetic drug interaction between gemfibrozil and sitagliptin in healthy Indian male volunteers. Eur J Clin Pharmacol. 2012;68(5):709–714.
  • Reyderman L, Kosoglou T, Statkevich P, et al. Assessment of a multiple-dose drug interaction between ezetimibe, a novel selective cholesterol absorption inhibitor and gemfibrozil. Int J Clin Pharmacol Ther. 2004;42(9):512–518.
  • Tornio A, Niemi M, Neuvonen PJ, et al. Stereoselective interaction between the CYP2C8 inhibitor gemfibrozil and racemic ibuprofen. Eur J Clin Pharmacol. 2007;63(5):463–469.
  • Tornio A, Filppula AM, Kailari O, et al. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions. Clin Pharmacol Ther. 2014;96(4):498–507.
  • Itkonen MK, Tornio A, Lapatto-Reiniluoto O, et al. Clopidogrel increases dasabuvir exposure with or without ritonavir, and ritonavir inhibits the bioactivation of clopidogrel. Clin Pharmacol Ther. 2019;105(1):219–228.
  • Itkonen MK, Tornio A, Neuvonen M, et al. Clopidogrel markedly increases plasma concentrations of CYP2C8 Substrate pioglitazone. Drug Metab Dispos. 2016;44(8):1364–1371.
  • Itkonen MK, Tornio A, Filppula AM, et al. Clopidogrel but not prasugrel significantly inhibits the CYP2C8-Mediated metabolism of montelukast in humans. Clin Pharmacol Ther. 2018;104(3):495–504.
  • FDA Center for drug evaluation and research summary review. 2017. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209939Orig1s000,209940Orig1s000SumR.pdf
  • FDA Center for drug evaluation and research Clinical Pharmacology and biopharmaceutics review(s). 2012. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202992Orig1s000ClinpharmR.pdf
  • Skerjanec A, Wang J, Maren K, et al. Investigation of the pharmacokinetic interactions of deferasirox, a once-daily oral iron chelator, with midazolam, rifampin, and repaglinide in healthy volunteers. J Clin Pharmacol. 2010;50(2):205–213.
  • Kim SJ, Yoshikado T, Ieiri I, et al. Clarification of the mechanism of clopidogrel-mediated drug-drug interaction in a clinical cassette small-dose study and its prediction based on in vitro information. Drug Metab Dispos. 2016;44(10):1622–1632.
  • Akande AA, Olugbenga SJ, Adebanjo AJ, et al. Effects of co-trimoxazole co-administration on the pharmacokinetics of amodiaquine in healthy volunteers. Int J Pharm Pharm Sci. 2015;7(9):272–276.
  • Tornio A, Niemi M, Neuvonen PJ, et al. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab Dispos. 2008;36(1):73–80.
  • Backman JT, Kajosaari LI, Neuvonen M, et al. Trimethoprim increases the plasma concentrations of cerivastatin by inhibiting its CYP2C8-mediated metabolism, Abstract in 8th European ISSX Meeting, Dijon, France, 2003 (April 27-May 1).
  • Niemi M, Backman JT, Neuvonen PJ. Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin Pharmacol Ther. 2004;76(3):239–249.
  • FDA Center for drug evaluation and research multi-discipline review. 2020. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/211723Orig1s000MultidisciplineR.pdf
  • Soyinka JO, Onyeji CO, Nathaniel TI, et al. Effects of concurrent administration of efavirenz on the disposition kinetics of amodiaquine in healthy volunteers. J Pharm Res. 2013 Feb 1;6(2):275–279.
  • Kajosaari LI, Niemi M, Backman JT, et al. Telithromycin, but not montelukast, increases the plasma concentrations and effects of the cytochrome P450 3A4 and 2C8 substrate repaglinide. Clin Pharmacol Ther. 2006;79(3):231–242.
  • FDA Center for drug evaluation and research multi-discipline review. 2020. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/213411Orig1s000MultidisciplineR.pdf
  • FDA Center for drug evaluation and research administrative and correspondence documents. 2018. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211155-Orig1Orig2s000AdminCorres.pdf.
  • FDA Center for drug evaluation and research multi-discipline review. 2020. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf
  • Park JY, Kim KA, Shin JG, et al. Effect of ketoconazole on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol. 2004;58(4):397–402.
  • FDA Center for drug evaluation and research chemistry review. 2014. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206619Orig1s000ChemR.pdf
  • Monbaliu J, Gonzalez M, Bernard A, et al. In vitro and in vivo drug-drug interaction studies to assess the effect of Abiraterone acetate, Abiraterone, and metabolites of Abiraterone on CYP2C8 activity. Drug Metab Dispos. 2016;44(10):1682–1691.
  • FDA Center for drug evaluation and research highlights of prescribing information. 2015. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021567s037,206352s002lbl.pdf.
  • Polepally AR, King JR, Ding B, et al. Drug–Drug interactions between the anti-hepatitis C virus 3D regimen of Ombitasvir, Paritaprevir/ Ritonavir, and Dasabuvir and eight commonly used medications in healthy volunteers. Clin Pharmacokinet. 2016;55(8):1003–1014.
  • Pei Q, Liu JY, Yin JY, et al. Repaglinide-irbesartan drug interaction: effects of SLCO1B1 polymorphism on repaglinide pharmacokinetics and pharmacodynamics in Chinese population. Eur J Clin Pharmacol. 2018;74(8):1021–1028.
  • FDA Center for drug evaluation and research multi-discipline review. 2020. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/213591Orig1s000MultidisciplineR.pdf
  • FDA Center for drug evaluation and research summary review. 2015. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207988Orig1s000SumR.pdf
  • FDA Center for drug evaluation and research summary review. 2018. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208627Orig1s000SumR.pdf
  • Edema O, Adeagbo BA, Adehin A, et al. Bidirectional pharmacokinetic interaction between amodiaquine and pioglitazone in healthy subjects. J Clin Pharmacol. 2018;58(8):1061–1066.
  • FDA Center for drug evaluation and research summary review. 2015. [cited 2021 Apr 06]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206500Orig1s000SumR.pdf
  • Pedersen RS, Damkier P, Brosen K. The effects of human CYP2C8 genotype and fluvoxamine on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol. 2006;62(6):682–689.
  • Thomas A, Best N, Way R. WinBUGS user manual. MRC Biostatistics Unit,  Cambridge CB2 2SR, UK. 2003. (January).
  • Guest EJ, Aarons L, Houston JB, et al. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions. Drug Metab Dispos. 2011;39(2):170–173.
  • Varma MVS, Lin J, Bi Y-A, et al. Quantitative rationalization of gemfibrozil drug interactions: consideration of transporters-enzyme interplay and the role of circulating metabolite gemfibrozil 1-O-β-Glucuronide. Drug Metab Dispos. 2015;43(7):1108–1118.
  • Kim S-J, Yoshikado T, Ieiri I, et al. Clarification of the mechanism of clopidogrel-mediated drug–drug interaction in a clinical cassette small-dose study and its prediction based on in vitro information. Drug Metab Dispos. 2016;44(10):1622–1632.
  • Türk D, Hanke N, Wolf S, et al. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug–drug–gene interactions: a modeling network of Gemfibrozil, Repaglinide, Pioglitazone, Rifampicin, Clarithromycin and Itraconazole. Clin Pharmacokinet. 2019;58(12):1595–1607.
  • Ingelman-Sundberg M, Sim SC, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.