295
Views
0
CrossRef citations to date
0
Altmetric
Review

Optimizing antibiotic dosing regimens for nosocomial pneumonia: a window of opportunity for pharmacokinetic and pharmacodynamic modeling

&
Pages 13-25 | Received 11 Nov 2022, Accepted 07 Feb 2023, Published online: 18 Feb 2023

References

  • Eber MR, Laxminarayan R, Perencevich EN, et al. Clinical and economic outcomes attributable to health care-associated sepsis and pneumonia. Arch Intern Med. 2010 Feb 22;170(4):347–353.
  • Giuliano KK, Baker D, Quinn B. The epidemiology of nonventilator hospital-acquired pneumonia in the United States. Am J Infect Control. 2018 Mar;46(3):322–327.
  • Magill SS, O’Leary E, Ray SM, et al. Antimicrobial use in US hospitals: comparison of results from emerging infections program prevalence surveys, 2015 and 2011. Clin Infect Dis. 2021 May 18;72(10):1784–1792.
  • Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American thoracic society. Clin Infect Dis. 2016 Sep 1;63(5):e61–e111.
  • Ferrer M, Torres A. Epidemiology of ICU-acquired pneumonia. Curr Opin Crit Care. 2018 Oct;24(5):325–331.
  • Corrado RE, Lee D, Lucero DE, et al. Burden of adult community-acquired, health-care-associated, hospital-acquired, and ventilator-associated pneumonia: New York city, 2010 to 2014. Chest. 2017 Nov;152(5):930–942.
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014 Mar 27;370(13):1198–1208.
  • Luyt CE, Hekimian G, Koulenti D, et al. Microbial cause of ICU-acquired pneumonia: hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr Opin Crit Care. 2018 Oct;24(5):332–338.
  • Warren DK, Shukla SJ, Olsen MA, et al. Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit Care Med. 2003 May;31(5):1312–1317.
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288–1301.
  • Weiner-Lastinger LM, Abner S, Edwards JR, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the national healthcare safety network, 2015-2017. Infect Control Hosp Epidemiol. 2020 Jan;41(1):1–18.
  • Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis. 2010 Aug 1;51(Suppl 1):S81–7.
  • Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother. 2013 Apr;68(4):900–906.
  • Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis. 2007 Sep 01;45(Suppl 2):S129–36.
  • Asin-Prieto E, Rodriguez-Gascon A, Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015 May;21(5):319–329.
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of America, the pediatric infectious diseases society, and the society of infectious diseases pharmacists. Am J Health Syst Pharm. 2020 May 19;77(11):835–864.
  • Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995 Mar;39(3):650–655.
  • Housman ST, Kuti JL, Nicolau DP. Optimizing antibiotic pharmacodynamics in hospital-acquired and ventilator-acquired bacterial pneumonia. Clin Chest Med. 2011 Sep;32(3):439–450.
  • Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016 Oct;42(10):1535–1545.
  • Lee YR, Miller PD, Alzghari SK, et al. Continuous infusion versus intermittent bolus of beta-lactams in critically ill patients with respiratory infections: a systematic review and meta-analysis. Eur J Drug Metab Pharmacokinet. 2018 Apr;43(2):155–170.
  • Hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia: developing drugs for treatment guidance for industry. Maryland, MD. Food and Drug Administration Center for Drug Evaluation and Research (CDER); 2020.
  • Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antimicrobial medicinal products. United Kingdom. European Medicines Agency; 2016 .
  • Roberts JA. Using PK/PD to optimize antibiotic dosing for critically ill patients. Curr Pharm Biotechnol. 2011;Dec;12(12):2070–2079.
  • Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011 Oct;50(10):637–664.
  • Rodvold KA, Hope WW, Boyd SE. Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung. Curr Opin Pharmacol. 2017 Oct;36:114–123.
  • Kiem S, Schentag JJ. Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother. 2008;52(1):24–36.
  • Kuti JL, Nicolau DP. Presence of infection influences the epithelial lining fluid penetration of oral levofloxacin in adult patients. Int J Antimicrob Agents. 2015 May;45(5):512–518.
  • Crandon JL, Kim A, Nicolau DP. Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J Antimicrob Chemother. 2009 Oct;64(4):837–839.
  • Baldwin DR, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: methodological considerations. Antimicrob Agents Chemother. 1992 Jun;36(6):1171–1175.
  • Crandon JL, Banevicius MA, Fang AF, et al. Bronchopulmonary disposition of intravenous voriconazole and anidulafungin given in combination to healthy adults. Antimicrob Agents Chemother. 2009 Dec;53(12):5102–5107.
  • Gotfried MH, Danziger LH, Rodvold KA. Steady-state plasma and intrapulmonary concentrations of levofloxacin and ciprofloxacin in healthy adult subjects. Chest. 2001 Apr;119(4):1114–1122.
  • Carcas AJ, Garcia-Satue JL, Zapater P, et al. Tobramycin penetration into epithelial lining fluid of patients with pneumonia. Clin Pharmacol Ther. 1999 Mar;65(3):245–250.
  • Katsube T, Nicolau DP, Rodvold KA, et al. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J Antimicrob Chemother. 2021 Oct 11;76(11):2902–2905.
  • Panidis D, Markantonis SL, Boutzouka E, et al. Penetration of gentamicin into the alveolar lining fluid of critically ill patients with ventilator-associated pneumonia. Chest. 2005 Aug;128(2):545–552.
  • Boselli E, Breilh D, Rimmele T, et al. Pharmacokinetics and intrapulmonary diffusion of levofloxacin in critically ill patients with severe community-acquired pneumonia. Crit Care Med. 2005 Jan;33(1):104–109.
  • Boselli E, Breilh D, Djabarouti S, et al. Reliability of mini-bronchoalveolar lavage for the measurement of epithelial lining fluid concentrations of tobramycin in critically ill patients. Intensive Care Med. 2007 Sep;33(9):1519–1523.
  • Conte JE Jr., Golden JA, Kelly MG, et al. Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline. Int J Antimicrob Agents. 2005 Jun;25(6):523–529.
  • Freire AT, Melnyk V, Kim MJ, et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis. 2010 Oct;68(2):140–151.
  • Bhavnani SM, Rubino CM, Hammel JP, et al. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob Agents Chemother. 2012 Feb;56(2):1065–1072.
  • Byl B, Jacobs F, Roucloux I, et al. Penetration of meropenem in lung, bronchial mucosa, and pleural tissues. Antimicrob Agents Chemother. 1999 Mar;43(3):681–682.
  • Motos A, Kuti JL, Li Bassi G, et al. Is one sample enough? β-lactam target attainment and penetration into epithelial lining fluid based on multiple bronchoalveolar lavage sampling time points in a swine pneumonia model. Antimicrob Agents Chemother. 2019 Feb;63:2.
  • Dhanani J, Roberts JA, Chew M, et al. Antimicrobial chemotherapy and lung microdialysis: a review. Int J Antimicrob Agents. 2010 Dec;36(6):491–500.
  • Marlin GE, Burgess KR, Burgoyne J, et al. Penetration of piperacillin into bronchial mucosa and sputum. Thorax. 1981 Oct;36(10):774–780.
  • Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014 Jun;14(6):498–509.
  • Felton TW, Ogungbenro K, Boselli E, et al. Comparison of piperacillin exposure in the lungs of critically ill patients and healthy volunteers. J Antimicrob Chemother. 2018 May 1;73(5):1340–1347.
  • Zhang Z, Patel YT, Fiedler-Kelly J, et al. Population pharmacokinetic analysis for plasma and epithelial lining fluid ceftolozane/tazobactam concentrations in patients with ventilated nosocomial pneumonia. J Clin Pharmacol. 2021 Feb;61(2):254–268.
  • Mouton JW, Dudley MN, Cars O, et al. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother. 2005 May;55(5):601–607.
  • Bulitta JB, Hope WW, Eakin AE, et al. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob Agents Chemother. 2019 May;63(5). 10.1128/AAC.02307-18.
  • Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug.’ Nat Rev Microbiol. 2004 Apr;2(4):289–300.
  • Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. quiz 11-2. Clin Infect Dis. 1998 Jan;26(1):1–10.
  • Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis. 1998 Jul;27(1):10–22.
  • Coleman K, Levasseur P, Girard AM, et al. Activities of ceftazidime and avibactam against beta-lactamase-producing Enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob Agents Chemother. 2014 Jun;58(6):3366–3372.
  • Bhagunde P, Chang K-T, Hirsch EB, et al. Novel modeling framework to guide design of optimal dosing strategies for β-lactamase inhibitors. Antimicrob Agents Chemother. 2012 May;56(5):3366–3372.
  • Ambrose PG, Lomovskaya O, Griffith DC, et al. beta-Lactamase inhibitors: what you really need to know. Curr Opin Pharmacol. 2017 Oct;36:86–93.
  • Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993 May;37(5):1073–1081.
  • Rayner CR, Forrest A, Meagher AK, et al. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–1423.
  • Kashuba AD, Nafziger AN, Drusano GL, et al. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother. 1999 Mar;43(3):623–629.
  • Noel AR, Attwood M, Bowker KE, et al. Pharmacodynamics of plazomicin and a comparator aminoglycoside, amikacin, studied in an in vitro pharmacokinetic model of infection. Int J Antimicrob Agents. 2019 Nov;54(5):626–632.
  • Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother. 2011 Oct;55(10):4619–4630.
  • Sader HS, Rhomberg PR, Farrell DJ, et al. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother. 2011 May;55(5):2390–2394.
  • Juan C, Zamorano L, Pérez JL, et al. Activity of a new antipseudomonal cephalosporin, CXA-101 (FR264205), against carbapenem-resistant and multidrug-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2010 Feb;54(2):846–851.
  • Moya B, Zamorano L, Juan C, et al. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother. 2010 Mar;54(3):1213–1217.
  • Giske CG, Ge J, Nordmann P. Activity of cephalosporin CXA-101 (FR264205) and comparators against extended-spectrum-{beta}-lactamase-producing Pseudomonas aeruginosa. J Antimicrob Chemother. 2009 Aug;64(2):430–431.
  • Livermore DM, Mushtaq S, Ge Y. Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2010 Sep;65(9):1972–1974.
  • Craig WA, Andes DR. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum β-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013 Apr;57(4):1577–1582.
  • VanScoy B, Mendes RE, Nicasio AM, et al. Pharmacokinetics-pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model. Antimicrob Agents Chemother. 2013 Jun;57(6):2809–2814.
  • Melchers MJ, Mavridou E, van Mil AC, et al. Pharmacodynamics of ceftolozane combined with tazobactam against Enterobacteriaceae in a neutropenic mouse thigh model. Antimicrob Agents Chemother. 2016 Dec;60(12):7272–7279.
  • Vanscoy B, Mendes RE, McCauley J, et al. Pharmacological basis of β-lactamase inhibitor therapeutics: tazobactam in combination with ceftolozane. Antimicrob Agents Chemother. 2013 Dec;57(12):5924–5930.
  • Bretonniere C, Boutoille D, Caillon J, et al. In vivo efficacy of ceftolozane against Pseudomonas aeruginosa in a rabbit experimental model of pneumonia: comparison with ceftazidime, piperacillin/tazobactam and imipenem. Int J Antimicrob Agents. 2014 Sep;44(3):218–221.
  • Jacqueline C, Roquilly A, Desessard C, et al. Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother. 2013 Jan;68(1):177–183.
  • Motos A, Li Bassi G, Pagliara F, et al. Short-term effects of appropriate empirical antimicrobial treatment with ceftolozane/tazobactam in a swine model of nosocomial pneumonia. Antimicrob Agents Chemother. 2021 Jan 20;65(2). DOI:10.1128/AAC.01899-20.
  • Petraitis V, Petraitiene R, Naing E, et al. Ceftolozane-tazobactam in the treatment of experimental pseudomonas aeruginosa pneumonia in persistently neutropenic rabbits: impact on strains with genetically defined mechanisms of resistance. Antimicrob Agents Chemother. 2019 Sep;63(9). doi:10.1128/AAC.00344-19.
  • Melchers MJ, Mavridou E, Seyedmousavi S, et al. Plasma and epithelial lining fluid pharmacokinetics of ceftolozane and tazobactam alone and in combination in mice. Antimicrob Agents Chemother. 2015;59(6):3373–3376.
  • Chandorkar G, Huntington JA, Gotfried MH, et al. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother. 2012 Oct;67(10):2463–2469.
  • Xiao AJ, Miller BW, Huntington JA, et al. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic-derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol. 2016 Jan;56(1):56–66.
  • Caro L, Nicolau DP, De Waele JJ, et al. Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia. J Antimicrob Chemother. 2020 Jun 01;75(6):1546–1553.
  • Kollef MH, Nováček M, Ü K, et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2019 Dec;19(12):1299–1311.
  • Timsit JF, Huntington JA, Wunderink RG, et al. Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: subset analysis of the ASPECT-NP randomized, controlled phase 3 trial. Crit Care. 2021 Sept 11;25(1):290.
  • Lodise t, yang j, puzniak la, et al. healthcare resource utilization of ceftolozane/tazobactam versus meropenem for ventilated nosocomial pneumonia from the randomized, controlled, double-blind ASPECT-NP trial. Infect Dis Ther. 2020 Dec;9(4):953–966.
  • Stachyra T, Péchereau MC, Bruneau JM, et al. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother. 2010 Dec;54(12):5132–5138.
  • Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother. 2004 Aug;54(2):410–417.
  • Aktaş Z, Kayacan C, Oncul O. In vitro activity of avibactam (NXL104) in combination with β-lactams against Gram-negative bacteria, including OXA-48 β-lactamase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2012 Jan;39(1):86–89.
  • de Jonge BL, Karlowsky JA, Kazmierczak KM, et al. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob Agents Chemother. 2016 May;60(5):3163–3169.
  • Avycaz (ceftazidime and avibactam) [package insert]. Madison, NJ.Allergan; 2020.
  • Crandon JL, Schuck VJ, Banevicius MA, et al. Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012 Dec;56(12):6137–6146.
  • MacVane SH, Kuti JL, Nicolau DP. Clinical pharmacodynamics of antipseudomonal cephalosporins in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58(3):1359–1364.
  • Housman ST, Crandon JL, Nichols WW, et al. Efficacies of ceftazidime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model. Antimicrob Agents Chemother. 2014;58(3):1365–1371.
  • Berkhout J, Melchers MJ, van Mil AC, et al. Pharmacodynamics of ceftazidime and avibactam in neutropenic mice with thigh or lung infection. Antimicrob Agents Chemother. 2016 Jan;60(1):368–375.
  • Nichols WW, Newell P, Critchley IA, et al. Avibactam pharmacokinetic/pharmacodynamic targets. Antimicrob Agents Chemother. 2018 Jun;62(6). doi:10.1128/AAC.02446-17.
  • Das S, Li J, Riccobene T, et al. Dose selection and validation for ceftazidime-avibactam in adults with complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia. Antimicrob Agents Chemother. 2019 Apr;63:4.
  • Nicolau DP, Siew L, Armstrong J, et al. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother. 2015 Oct;70(10):2862–2869.
  • Berkhout J, Melchers MJ, van Mil AC, et al. Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrob Agents Chemother. 2015 Apr;59(4):2299–2304.
  • Li J, Lovern M, Green ML, et al. Ceftazidime-avibactam population pharmacokinetic modeling and pharmacodynamic target attainment across adult indications and patient subgroups. Clin Transl Sci. 2019 Mar;12(2):151–163.
  • Torres A, Zhong N, Pachl J, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018 Mar;18(3):285–295.
  • Recarbrio (imipenem, cilastatin, and relebactam) [package insert]. Rahway, NJ. Merck Sharp & Dohme LLC; 2022.
  • Okamoto K, Gotoh N, Nishino T. Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems. J Infect Chemother. 2002 Dec;8(4):371–373.
  • Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006 Sep 01;43(Suppl 2):S49–56.
  • Horner C, Mushtaq S, Livermore DM, et al. Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory infections. J Antimicrob Chemother. 2019 July 01;74(7):1940–1944.
  • Blizzard TA, Chen H, Kim S, et al. Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin®. Bioorg Med Chem Lett. 2014 Feb 01;24(3):780–785.
  • Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013 Oct;68(10):2286–2290.
  • Bhagunde P, Zhang Z, Racine F, et al. A translational pharmacokinetic/pharmacodynamic model to characterize bacterial kill in the presence of imipenem-relebactam. Int J Infect Dis. 2019 Dec;89:55–61.
  • Daryani N, Patel, M, Flattery A, et al. Imipenem/relebactam pharmacokinetic/ pharmacodynamic analyses from an in vivo neutropenic mouse delayed lung infection model. Thirtieth European Society of Clinical Microbiology and Infectious Diseases Abstract. 2020;Abstract 2086.
  • Patel M, Daryani, NM, Hwa-Ping F et al, et al. Imipenem/relebactam pharmacokinetic/ pharmacodynamic analyses from an in vivo neutropenic murine thigh infection model. Thirtieth European Society of Clinical Microbiology and Infectious Diseases Abstract. 2020; Abstract 1693 .
  • Rizk ML, Rhee EG, Jumes PA, et al. Intrapulmonary pharmacokinetics of relebactam, a novel β-lactamase inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018 Mar;62:3.
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020 Apr 15;70(9):1799–1808.
  • Titov I, Wunderink RG, Roquilly A, et al. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/relebactam versus piperacillin/tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (RESTORE-IMI 2 Study). Clin Infect Dis. 2021 Dec 06;73(11):e4539–e4548.
  • Patel M, Bellanti F, Daryani NM, et al. Population pharmacokinetic/pharmacodynamic assessment of imipenem/cilastatin/relebactam in patients with hospital-acquired/ventilator-associated bacterial pneumonia. Clin Transl Sci. 2022 Feb;15(2):396–408.
  • Ito A, Sato T, Ota M, et al. Antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother. 2018 Jan;62(1). doi:10.1128/AAC.01454-17.
  • Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019 Nov 13;69(Suppl 7):S538–S543.
  • Aoki T, Yoshizawa H, Yamawaki K, et al. Cefiderocol (S-649266), A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship. Eur J Med Chem. 2018 Jul 15;155:847–868.
  • Fotroja (cefiderocol) [package insert]. Florham Park, NJ. Shionogi & Co. L; 2021.
  • Nakamura R, Ito-Horiyama T, Takemura M, et al. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob Agents Chemother. 2019 Sep;63(9). doi:10.1128/AAC.02031-18.
  • Monogue ML, Tsuji M, Yamano Y, et al. Efficacy of humanized exposures of cefiderocol (S-649266) against a diverse population of gram-negative bacteria in a murine thigh infection model. Antimicrob Agents Chemother. 2017 Nov;61(11). doi:10.1128/AAC.01022-17.
  • Petraitis V, Petraitiene R, Kavaliauskas P, et al. Efficacy of cefiderocol in experimental stenotrophomonas maltophilia pneumonia in persistently neutropenic rabbits. Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0061822.
  • Tsuji M, Singley C, Horiyama T, et al. 248S-649266, a novel siderophore cephalosporin: efficacy against Klebsiella pneumoniae producing NDM-1 or KPC in rat lung infection model with recreated humanized exposure profile of 2 gram dose with 1 hour and 3 hours infusion. Open Forum Infect Dis. 2014;1(suppl_1):S106–S107.
  • Katsube T, Saisho Y, Shimada J, et al. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects. J Antimicrob Chemother. 2019 Jul 1;74(7):1971–1974.
  • Kawaguchi N, Katsube T, Echols R, et al. Intrapulmonary pharmacokinetic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, in patients with pneumonia and healthy subjects. J Clin Pharmacol. 2022 May;62(5):670–680.
  • Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021 Feb;21(2):213–225.
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021 Feb;21(2):226–240.
  • Zerbaxa (ceftolozane and tazobactam) [package insert]. Rahway, NJ. Merck Sharp & Dohme Corp; 2022.
  • Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016 Oct;60(10):6234–6243.
  • Lodise TP, Patel N, Renaud-Mutart A, et al. Pharmacokinetic and pharmacodynamic profile of ceftobiprole. Diagn Microbiol Infect Dis. 2008 May;61(1):96–102.
  • Awad SS, Rodriguez AH, Chuang YC, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis. 2014 Jul 01;59(1):51–61.
  • Rodvold KA, Nicolau DP, Lodise TP, et al. Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole. Antimicrob Agents Chemother. 2009 Aug;53(8):3294–3301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.