248
Views
1
CrossRef citations to date
0
Altmetric
Review

Azole antifungals and inter-individual differences in drug metabolism: the role of pharmacogenomics and precision medicine

ORCID Icon, , ORCID Icon &
Pages 165-174 | Received 19 Jan 2023, Accepted 13 Apr 2023, Published online: 23 Apr 2023

References

  • Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev. 1999;12(1):40–79.
  • Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis an off Publ Infect Dis Soc Am. 2003;36(5):630–637.
  • Nagappan V, Deresinski S. Reviews of anti-infective agents: posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis an off Publ Infect Dis Soc Am. 2007;45(12):1610–1617.
  • Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med. 1994;330(4):263–272.
  • González GM, Sutton DA, Thompson E, et al. In vitro activities of approved and investigational antifungal agents against 44 clinical isolates of basidiomycetous fungi. Antimicrob Agents Chemother. 2001;45(2):633–635. DOI:10.1128/AAC.45.2.633-635.2001
  • González GM, Fothergill AW, Sutton DA, et al. In vitro activities of new and established triazoles against opportunistic filamentous and dimorphic fungi. Med Mycol. 2005;43(3):281–284. DOI:10.1080/13693780500088416
  • Sun QN, Fothergill AW, McCarthy DI, et al. In vitro activities of posaconazole, itraconazole, voriconazole, amphotericin B, and fluconazole against 37 clinical isolates of zygomycetes. Antimicrob Agents Chemother. 2002;46(5):1581–1582. DOI:10.1128/AAC.46.5.1581-1582.2002
  • Cuenca-Estrella M, Ruiz-Díez B, Martínez-Suárez JV, et al. Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother. 1999;43(1):149–151. DOI:10.1093/jac/43.1.149
  • Pfaller MA, Messer SA, Hollis RJ, et al. In vitro activities of posaconazole (Sch 56592) compared with those of itraconazole and fluconazole against 3,685 clinical isolates of Candida spp. and Cryptococcus neoformans. Antimicrob Agents Chemother. 2001;45(10):2862–2864. DOI:10.1128/AAC.45.10.2862-2864.2001
  • Diekema DJ, Messer SA, Hollis RJ, et al. Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol. 2003;41(8):3623–3626. DOI:10.1128/JCM.41.8.3623-3626.2003
  • Pfaller MA, Messer SA, Boyken L, et al. In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis. 2004;48(3):201–205. DOI:10.1016/j.diagmicrobio.2003.09.008
  • Pfaller MA, Messer SA, Hollis RJ, et al. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of aspergillus spp. and other filamentous fungi: report from SENTRY antimicrobial surveillance program, 2000. Antimicrob Agents Chemother. 2002;46(4):1032–1037. DOI:10.1128/AAC.46.4.1032-1037.2002
  • Pfaller MA, Messer SA, Hollis RJ, et al. In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, Sch 56592, and voriconazole. Antimicrob Agents Chemother. 1998;42(12):3242–3244. DOI:10.1128/AAC.42.12.3242
  • Pfaller MA, Messer SA, Boyken L, et al. Use of fluconazole as a surrogate marker to predict susceptibility and resistance to voriconazole among 13,338 clinical isolates of Candida spp. Tested by clinical and laboratory standards institute-recommended broth microdilution methods. J Clin Microbiol. 2007;45(1):70–75. DOI:10.1128/JCM.01551-06
  • Clark NM, Grim SA, Lynch JP. 3rd. Posaconazole: use in the prophylaxis and treatment of fungal infections. Semin Respir Crit Care Med. 2015;36(05):767–785.
  • Lewis JS 2nd, Wiederhold NP, Hakki M, et al. New perspectives on antimicrobial agents: isavuconazole. Antimicrob Agents Chemother. 2022;66(9):e0017722. DOI:10.1128/aac.00177-22
  • Meletiadis J, Al-Saigh R, Velegraki A, et al. Pharmacodynamic effects of simulated standard doses of antifungal drugs against Aspergillus species in a new in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2012;56(1):403–410. DOI:10.1128/AAC.00662-11
  • Mavridou E, Bruggemann RJM, Melchers WJG, et al. Impact of cyp51A mutations on the pharmacokinetic and pharmacodynamic properties of voriconazole in a murine model of disseminated aspergillosis. Antimicrob Agents Chemother. 2010;54(11):4758–4764. DOI:10.1128/AAC.00606-10
  • Amsden JR, Gubbins PO. Pharmacogenomics of triazole antifungal agents: implications for safety, tolerability and efficacy. Expert Opin Drug Metab Toxicol. 2017;13(11):1135–1146. DOI:10.1080/17425255.2017.1391213
  • García-García I, Borobia AM. Current approaches and future strategies for the implementation of pharmacogenomics in the clinical use of azole antifungal drugs. Expert Opin Drug Metab Toxicol England. 2021;17(5):509–514. DOI:10.1080/17425255.2021.1890715
  • Ashbee HR, Gilleece MH. Has the era of individualised medicine arrived for antifungals? A review of antifungal pharmacogenomics. Bone Marrow Transplant. 2012;47(7):881–894. DOI:10.1038/bmt.2011.146
  • Mikus G, Scholz IM, Weiss J. Pharmacogenomics of the triazole antifungal agent voriconazole. Pharmacogenomics. 2011;12(6):861–872. DOI:10.2217/pgs.11.18
  • Daneshmend TK, Warnock DW. Clinical pharmacokinetics of systemic antifungal drugs. Clin Pharmacokinet. 1983;8(1):17–42.
  • Debruyne D, Ryckelynck JP. Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet. 1993;24(1):10–27.
  • Krieter P, Flannery B, Musick T, et al. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother. 2004;48(9):3543–3551. DOI:10.1128/AAC.48.9.3543-3551.2004
  • Williams D. The effect of enteral nutrition supplements on serum voriconazole levels. J Oncol Pharm Pract off Publ Int Soc Oncol Pharm Pract. 2012;18(1):128–131.
  • Dolton MJ, Mikus G, Weiss J, et al. Understanding variability with voriconazole using a population pharmacokinetic approach: implications for optimal dosing. J Antimicrob Chemother. 2014;69(6):1633–1641. DOI:10.1093/jac/dku031
  • Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737–779.
  • Goodwin ML, Drew RH. Antifungal serum concentration monitoring: an update. J Antimicrob Chemother. 2008;61(1):17–25.
  • Schmitt-Hoffmann A, Roos B, Heep M, et al. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in health. Antimicrob Agents Chemother. 2006;50(1):279–285. DOI:10.1128/AAC.50.1.279-285.2006
  • Zilberberg MD, Kollef MH, Arnold H, et al. Inappropriate empiric antifungal therapy for candidemia in the ICU and hospital resource utilization: a retrospective cohort study. BMC Infect Dis. 2010;10(1):150. DOI:10.1186/1471-2334-10-150
  • Labelle AJ, Micek ST, Roubinian N, et al. Treatment-related risk factors for hospital mortality in Candida bloodstream infections. Crit Care Med. 2008;36(11):2967–2972. DOI:10.1097/CCM.0b013e31818b3477
  • Andes D, Ambrose PG, Hammel JP, et al. Use of pharmacokinetic-pharmacodynamic analyses to optimize therapy with the systemic antifungal micafungin for invasive candidiasis or candidemia. Antimicrob Agents Chemother. 2011;55(5):2113–2121. DOI:10.1128/AAC.01430-10
  • Sinnollareddy MG, Roberts JA, Lipman J, et al. Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: data from multinational defining antibiotic levels in intensive care unit (DALI) patients study. crit care. 2015;19(1):33. DOI:10.1186/s13054-015-0758-3
  • Ullmann AJ, Cornely OA, Burchardt A, et al. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother. 2006;50(2):658–666. DOI:10.1128/AAC.50.2.658-666.2006
  • Bolcato L, Thiebaut-Bertrand A, Stanke-Labesque F, et al. Variability of isavuconazole trough concentrations during longitudinal therapeutic drug monitoring. J Clin Med. 2022;11(19):11. DOI:10.3390/jcm11195756
  • Chuwongwattana S, Jantararoungtong T, Prommas S, et al. Impact of CYP2C19, CYP3A4, ABCB1, and FMO3 genotypes on plasma voriconazole in Thai patients with invasive fungal infections. Pharmacol Res Perspect. 2020;8(6):e00665. DOI:10.1002/prp2.665
  • Sukprasong R, Chuwongwattana S, Koomdee N, et al. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep. 2021;11(1):12343. DOI:10.1038/s41598-021-90969-y
  • Biswas M. Global distribution of CYP2C19 risk phenotypes affecting safety and effectiveness of medications. Pharmacogenomics J. 2021;21(2):190–199.
  • Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700.
  • Atasilp C, Biswas M, Jinda P, et al. Association of UGT1A1*6, UGT1A1*28, or ABCC2 c.3972C>T genetic polymorphisms with irinotecan-induced toxicity in Asian cancer patients: meta-analysis. Clin Transl Sci. 2022;15(7):1613–1633. DOI:10.1111/cts.13277
  • Sukasem C, Tunthong R, Chamnanphon M, et al. CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors. Pharmgenomics Pers Med. 2013;6:85–91.
  • Dean L, Pratt VM, Scott SA, et al. Voriconazole Therapy and CYP2C19 Genotype.Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK552035/
  • Moriyama B, Obeng AO, Barbarino J, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51. DOI:10.1002/cpt.583
  • Zhang Y, Hao X, Hou K, et al. Impact of cytochrome P450 2C19 polymorphisms on the clinical efficacy and safety of voriconazole: an update systematic review and meta-analysis. Pharmacogenet Genomics. 2022;32(7):257–267. DOI:10.1097/FPC.0000000000000470
  • Li X, Yu C, Wang T, et al. Effect of cytochrome P450 2C19 polymorphisms on the clinical outcomes of voriconazole: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2016;72(10):1185–1193. DOI:10.1007/s00228-016-2089-y
  • Zhang Y, Hou K, Liu F, et al. The influence of CYP2C19 polymorphisms on voriconazole trough concentrations: systematic review and meta-analysis. Mycoses. 2021;64(8):860–873. DOI:10.1111/myc.13293
  • Duflot T, Schrapp A, Bellien J, et al. Impact of CYP3A4 genotype on voriconazole exposure. Clin Pharmacol Ther United States. 2018;103(2):185–186. DOI:10.1002/cpt.809
  • Niwa T, Hata T. The effect of genetic polymorphism on the inhibition of azole antifungal agents against CYP2C9-mediated metabolism. J Pharm Sci. 2016;105(3):1345–1348.
  • Allegra S, Fatiguso G, Francia SD, Pirro E, Carcieri C, Cusato J, Nicolò AD, Avataneo V, Perri GD, D’Avolio A. et al. Pharmacogenetic of voriconazole antifungal agent in pediatric patients. Pharmacogenomics. 2018;19:913–925.
  • Weiss J, Ten Hoevel MM, Burhenne J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204. DOI:10.1177/0091270008327537
  • Lee SW, Oh J, Kim AH, et al. Oral absorption of voriconazole is affected by SLCO2B1 c.*396T>C genetic polymorphism in CYP2C19 poor metabolizers. Pharmacogenomics J. 2020;20(6):792–800. DOI:10.1038/s41397-020-0166-1
  • Zeng G, Wang L, Shi L, et al. Variability of voriconazole concentrations in patients with hematopoietic stem cell transplantation and hematological malignancies: influence of loading dose, procalcitonin, and pregnane X receptor polymorphisms. Eur J Clin Pharmacol. 2020;76(4):515–523. DOI:10.1007/s00228-020-02831-1
  • Shirasaka Y, Chang S-Y, Grubb MF, et al. Effect of CYP3A5 expression on the inhibition of CYP3A-catalyzed drug metabolism: impact on modeling CYP3A-mediated drug-drug interactions. Drug Metab Dispos. 2013;41(8):1566–1574. DOI:10.1124/dmd.112.049940
  • Wang H, Kim RA, Sun D, et al. Evaluation of the effects of 18 non-synonymous single-nucleotide polymorphisms of CYP450 2C19 on in vitro drug inhibition potential by a fluorescence-based high-throughput assay. Xenobiotica. 2011;41(9):826–835. DOI:10.3109/00498254.2011.582893
  • Suh HJ, Yoon SH, K-S Y, et al. The genetic polymorphism UGT1A4*3 is associated with low posaconazole plasma concentrations in hematological malignancy patients receiving the oral suspension. Antimicrob Agents Chemother. 2018;62(7):62. DOI:10.1128/AAC.02230-17
  • Niioka T, Fujishima N, Abumiya M, et al. Relationship between the CYP2C19 phenotype using the voriconazole-to-voriconazole N-Oxide plasma concentration ratio and demographic and clinical characteristics of Japanese patients with different CYP2C19 genotypes. Ther Drug Monit. 2017;39(5):514–521. DOI:10.1097/FTD.0000000000000441
  • Lamoureux F, Duflot T, Woillard J-B, et al. Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. Int J Antimicrob Agents. 2016;47(2):124–131. DOI:10.1016/j.ijantimicag.2015.12.003
  • Fan X, Zhang H, Wen Z, et al. Effects of CYP2C19, CYP2C9 and CYP3A4 gene polymorphisms on plasma voriconazole levels in Chinese pediatric patients. Pharmacogenet Genomics. 2022;32(4):152–158. DOI:10.1097/FPC.0000000000000464
  • Abidi MZ, D’Souza A, Kuppalli K, et al. CYP2C19*17 genetic polymorphism—an uncommon cause of voriconazole treatment failure. Diagn Microbiol Infect Dis. 2015;83(1):46–48. DOI:10.1016/j.diagmicrobio.2015.05.002
  • Weigel JD, Hunfeld NGM, Koch BCP, et al. Gain-of-function single nucleotide variants of the CYP2C19 gene (CYP2C19*17) can identify subtherapeutic voriconazole concentrations in critically ill patients: a case series. Intensive Care Med United States. 2015;41(11):2013–2014. DOI:10.1007/s00134-015-4002-z
  • Prommas S, Puangpetch A, Jenjirattithigarn N, et al. Development and validation of voriconazole concentration by LC-MS-MS: applied in clinical implementation. J Clin Lab Anal. 2017;31(1):e22011. DOI:10.1002/jcla.22011
  • Kobayashi K, Abe Y, Kawai A, et al. Pharmacokinetic drug interactions of an orally available TRH analog (rovatirelin) with a CYP3A4/5 and P-Glycoprotein Inhibitor (Itraconazole). J Clin Pharmacol. 2020;60(10):1314–1323. DOI:10.1002/jcph.1628
  • Petitcollin A, Crochette R, Tron C, et al. Increased inhibition of cytochrome P450 3A4 with the tablet formulation of posaconazole. Drug Metab Pharmacokinet. 2016;31(5):389–393. DOI:10.1016/j.dmpk.2016.05.001
  • Chen L, Krekels EHJ, Verweij PE, et al. Pharmacokinetics and pharmacodynamics of posaconazole. Drugs. 2020;80(7):671–695. DOI:10.1007/s40265-020-01306-y
  • Van Daele R, Debaveye Y, Vos R, et al. Concomitant use of isavuconazole and CYP3A4/5 inducers: where pharmacogenetics meets pharmacokinetics. Mycoses. 2021;64(9):1111–1116. DOI:10.1111/myc.13300
  • Niwa T, Imagawa Y, Yamazaki H. Drug interactions between nine antifungal agents and drugs metabolized by human cytochromes P450. med Mycol. 2014;15(7):651–679.
  • Tian X, Zhang C, Qin Z, et al. Impact of CYP2C19 phenotype and drug-drug interactions on voriconazole concentration in pediatric patients. Antimicrob Agents Chemother. 2021;65(9):e0020721. DOI:10.1128/AAC.00207-21
  • Biswas M, Rahaman S, Biswas TK, et al. Risk of major adverse cardiovascular events for concomitant use of clopidogrel and proton pump inhibitors in patients inheriting CYP2C19 loss-of-function alleles: meta-analysis. Int J Clin Pharm. 2021;43(5):1360–1369. DOI:10.1007/s11096-021-01261-y
  • Zhu L, Brüggemann RJ, Uy J, et al. CYP2C19 genotype-dependent pharmacokinetic drug interaction between voriconazole and ritonavir-boosted atazanavir in healthy subjects. J Clin Pharmacol. 2017;57(2):235–246. DOI:10.1002/jcph.798
  • Shi H-Y, Yan J, Zhu W-H, et al. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol. 2010;66(11):1131–1136. DOI:10.1007/s00228-010-0869-3
  • Chen J, Wu Y, He Y, et al. Combined effect of CYP2C19 genetic polymorphisms and c-reactive protein on voriconazole exposure and dosing in immunocompromised children. Front Pediatr. 2022;10:846411.
  • Maschmeyer G, De Greef J, Mellinghoff SC, et al. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL). Leukemia. 2019;33:p. 844–862.
  • Jacinto PL, Chandrasekar P. Safety of posaconazole. Expert Opin Drug Saf. 2013;12(2):265–274.
  • Tverdek FP, Heo ST, Aitken SL, et al. Real-life assessment of the safety and effectiveness of the new tablet and intravenous formulations of posaconazole in the prophylaxis of invasive fungal infections via analysis of 343 courses. Antimicrob Agents Chemother. 2017;61(8):61. DOI:10.1128/AAC.00188-17
  • Park J-W, Kim K-A, Park J-Y. Effects of ketoconazole, a CYP4F2 inhibitor, and CYP4F2*3 genetic polymorphism on pharmacokinetics of vitamin K 1. J Clin Pharmacol. 2019;59(11):1453–1461.
  • Kuypers DR, de Jonge H, Naesens M, et al. Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenet Genomics. 2008;18(10):861–868. DOI:10.1097/FPC.0b013e328307c26e
  • Biswas M, Rahaman S, Biswas TK, et al. Effects of the ABCB1 C3435T single nucleotide polymorphism on major adverse cardiovascular events in acute coronary syndrome or coronary artery disease patients undergoing percutaneous coronary intervention and treated with clopidogrel: a systematic review and meta-analysis. Expert Opin Drug Saf. 2020;19(12):1605–1616. DOI:10.1080/14740338.2020.1836152
  • Biswas M, Sukasem C, Khatun Kali MS, et al. Effects of the CYP2C19 LoF allele on major adverse cardiovascular events associated with clopidogrel in acute coronary syndrome patients undergoing percutaneous coronary intervention: a meta-analysis. Pharmacogenomics. 2022;23(3):207–220. DOI:10.2217/pgs-2021-0098
  • Biswas M, Ershadian M, Shobana J, et al. Associations of HLA genetic variants with carbamazepine-induced cutaneous adverse drug reactions: an updated meta-analysis. Clin Transl Sci. 2022;15(8):1887–1905. DOI:10.1111/cts.13291
  • Biswas M, Kali SK. Association of CYP2C19 loss-of-function alleles with major adverse cardiovascular events of clopidogrel in stable coronary artery disease patients undergoing percutaneous coronary intervention: meta-analysis. Cardiovasc Drugs Ther. 2021;35(6):1147–1159.
  • Biswas M, Kali MSK, Biswas TK, et al. Risk of major adverse cardiovascular events of CYP2C19 loss-of-function genotype guided prasugrel/ticagrelor vs clopidogrel therapy for acute coronary syndrome patients undergoing percutaneous coronary intervention: a meta-analysis. Platelets. 2021;32(5):591–600. DOI:10.1080/09537104.2020.1792871
  • Biswas M, Jinda P, Sukasem C. Pharmacogenomics in Asians: differences and similarities with other human populations. Expert Opin Drug Metab Toxicol. 2023;19(1):1–15.
  • Lo C, Nguyen S, Yang C, et al. Pharmacogenomics in Asian subpopulations and impacts on commonly prescribed medications. Clin Transl Sci. 2020;13(5):861–870. DOI:10.1111/cts.12771
  • Lee MTM, Mahasirimongkol S, Zhang Y, et al. Clinical application of pharmacogenomics: the example of HLA-based drug-induced toxicity. Public Health Genomics. 2014;17(5–6):248–255. DOI:10.1159/000366253

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.