911
Views
0
CrossRef citations to date
0
Altmetric
Review

The influence of cardiopulmonary bypass on pediatric pharmacokinetics

ORCID Icon &
Pages 333-344 | Received 18 Aug 2022, Accepted 16 Jun 2023, Published online: 20 Jun 2023

References

  • Scott M, Neal AE. Congenital heart disease. Prim Care. 2021 Sep;48(3):351–366. doi: 10.1016/j.pop.2021.04.005
  • Pettitt TW. Quality improvement in congenital heart surgery. NeoReviews. 2020 Mar;21(3):e179–e192. doi: 10.1542/neo.21-3-e179
  • van Saet A, de Wildt SN, Knibbe CA, et al. The effect of adult and pediatric cardiopulmonary bypass on pharmacokinetic and pharmacodynamic parameters. Curr Clin Pharmacol. 2013 Nov;8(4):297–318.
  • Jenke D, Couch T, Gillum A, et al. Modeling of the solution interaction properties of plastic materials used in pharmaceutical product container systems. PDA J Pharm Sci Technol. 2009 Jul;63(4):294–306.
  • Wang M, Li Y, Srinivasan P, et al. Interactions between biological products and product packaging and potential approaches to overcome them. AAPS Pharm Sci Tech. 2018 Nov;19(8):3681–3686.
  • Wildschut ED, Ahsman MJ, Allegaert K, et al. Determinants of drug absorption in different ECMO circuits. Intensive care Med. 2010 Dec;36(12):2109–2116.
  • Raffaeli G, Allegaert K, Koch B, et al. In vitro adsorption of analgosedative drugs in new extracorporeal membrane oxygenation circuits. Pediatr Crit Care Med. 2018 May;19(5):e251–e258.
  • van Saet A, Zeilmaker-Roest GA, van Hoeven MPJ, et al. In vitro recovery of sufentanil, midazolam, propofol, and methylprednisolone in pediatric cardiopulmonary bypass systems. J Cardiothorac Vasc Anesth. 2020 Apr;34(4):972–980.
  • Shekar K, Roberts JA, Barnett AG, et al. Can physicochemical properties of antimicrobials be used to predict their pharmacokinetics during extracorporeal membrane oxygenation? Illustrative data from ovine models. Crit Care. 2015 Dec 15;19(1):437. doi:10.1186/s13054-015-1151-y
  • Shekar K, Roberts JA, McDonald CI, et al. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care. 2015 Apr 14;19(1):164. doi:10.1186/s13054-015-0891-z
  • Wilder NS, Andropoulos DB, Paugh T, et al. Sequestration of dexmedetomidine in ex vivo cardiopulmonary bypass circuits. Asaio J. 2021 Aug 3;68:592–598. doi: 10.1097/MAT.0000000000001536
  • Hammaren E, Rosenberg PH, Hynynen M. Coating of extracorporeal circuit with heparin does not prevent sequestration of propofol in vitro. Br J Anaesth. 1999 Jan;82(1):38–40. doi: 10.1093/bja/82.1.38
  • Kuntz MT, Pereira LM, Matte GS, et al. Sequestration of midazolam, fentanyl, and morphine by an ex vivo cardiopulmonary bypass circuit. Asaio J. 2021 Jun 24;67(12):1342–1348. doi:10.1097/MAT.0000000000001506
  • Koren G, Crean P, Klein J, et al. Sequestration of fentanyl by the cardiopulmonary bypass (CPBP). Eur J Clin Pharmacol. 1984;27(1):51–56. DOI:10.1007/BF02395206
  • Preston TJ, Ratliff TM, Gomez D, et al. Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol. 2010 Sep;42(3):199–202.
  • Myers GJ, Voorhees C, Eke B, et al. The effect of Diprivan (propofol) on phosphorylcholine surfaces during cardiopulmonary bypass–an in vitro investigation. Perfusion. 2009 Sep;24(5):349–355.
  • Park J, Shin DA, Lee S, et al. Investigation of key circuit constituents affecting drug sequestration during extracorporeal membrane oxygenation treatment. Asaio J. 2017 May;63(3):293–298.
  • Booth BP, Henderson M, Milne B, et al. Sequestration of glyceryl trinitrate (nitroglycerin) by cardiopulmonary bypass oxygenators. Anesth Analg. 1991 Apr;72(4):493–497.
  • Rosen D, Rosen K, Davidson B, et al. Fentanyl uptake by the Scimed membrane oxygenator. J Cardiothorac Anesth. 1988 Oct;2(5):619–626.
  • Preston TJ, Hodge AB, Riley JB, et al. In vitro drug adsorption and plasma free hemoglobin levels associated with hollow fiber oxygenators in the extracorporeal life support (ECLS) circuit. J Extra Corpor Technol. 2007 Dec;39(4):234–237.
  • Cholette JM, Faraoni D, Goobie SM, et al. Patient blood management in pediatric cardiac surgery: a review. Anesth Analg. 2018 Oct;127(4):1002–1016.
  • Cholette JM, Powers KS, Alfieris GM, et al. Transfusion of cell saver salvaged blood in neonates and infants undergoing open heart surgery significantly reduces RBC and coagulant product transfusions and donor exposures: results of a prospective, randomized, clinical trial. Pediatr Crit Care Med. 2013 Feb;14(2):137–147.
  • Zeilmaker-Roest GA, van Saet A, van Rosmalen J, et al. Potentially clinically relevant concentrations of cefazolin, midazolam, propofol, and sufentanil in auto-transfused blood in congenital cardiac surgery. J Cardiothorac Surg. 2018 Jun 8;13. doi:10.1186/s13019-018-0747-0
  • De Cock PA, Mulla H, Desmet S, et al. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J Antimicrob Chemother. 2017 Mar 1;72(3):791–800. doi:10.1093/jac/dkw496
  • Ingrande J, Gutierrez K, Lemmens HJ, et al. Pharmacokinetics of cefazolin and vancomycin in infants undergoing open-heart surgery with cardiopulmonary bypass. Anesth Analg. 2019 May;128(5):935–943.
  • Wesley MC, Pereira LM, Scharp LA, et al. Pharmacokinetics of tranexamic acid in neonates, infants, and children undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology. 2015 Apr;122(4):746–758.
  • Gertler R, Gruber M, Grassin-Delyle S, et al. Pharmacokinetics of tranexamic acid in neonates and infants undergoing cardiac surgery. Br J Clin Pharmacol. 2017 Aug;83(8):1745–1757.
  • Ricci Z, Benegni S, Cies JJ, et al. Population pharmacokinetics of cefoxitin administered for pediatric cardiac surgery prophylaxis. Pediatr Infect Dis J. 2020 Jul;39(7):609–614.
  • Gertler R, Gruber M, Wiesner G, et al. Pharmacokinetics of cefuroxime in infants and neonates undergoing cardiac surgery. Br J Clin Pharmacol. 2018 Sep;84(9):2020–2028.
  • van Saet A, Zeilmaker-Roest GA, Veen KM, et al. Methylprednisolone plasma concentrations during cardiac surgery with cardiopulmonary bypass in pediatric patients. Front Cardiovasc Med. 2021;8:640543. doi:10.3389/fcvm.2021.640543
  • Hornik CP, Gonzalez D, Dumond J, et al. Population pharmacokinetic/pharmacodynamic modeling of methylprednisolone in neonates undergoing cardiopulmonary bypass. CPT Pharmacometrics Syst Pharmacol. 2019 Dec;8(12):913–922.
  • Cies JJ, Moore WS, Parker J, et al. Pharmacokinetics of cefazolin delivery via the cardiopulmonary bypass circuit priming solution in infants and children. J Antimicrob Chemother. 2019 May 1;74(5):1342–1347. doi:10.1093/jac/dky574
  • Jaworski R, Dzierzanowska-Fangrat K, Czajkowska A, et al. Cefazolin prophylaxis in children undergoing cardiac surgery with the use of cardiopulmonary bypass-is the dosing correct? Eur J Cardiothorac Surg. 2021 Jul 16;27:27–33. doi: 10.1093/ejcts/ezab251
  • Eaton MP, Alfieris GM, Sweeney DM, et al. Pharmacokinetics of epsilon-aminocaproic acid in neonates undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology. 2015 May;122(5):1002–1009.
  • Hynynen M, Hynninen M, Soini H, et al. Plasma concentration and protein binding of alfentanil during high-dose infusion for cardiac surgery. Br J Anaesth. 1994 May;72(5):571–576.
  • Takizawa E, Hiraoka H, Takizawa D, et al. Changes in the effect of propofol in response to altered plasma protein binding during normothermic cardiopulmonary bypass. Br J Anaesth. 2006 Feb;96(2):179–185.
  • Hammaren E, Yli-Hankala A, Rosenberg PH, et al. Cardiopulmonary bypass-induced changes in plasma concentrations of propofol and in auditory evoked potentials. Br J Anaesth. 1996 Sep;77(3):360–364.
  • Jeleazcov C, Saari TI, Ihmsen H, et al. Changes in total and unbound concentrations of sufentanil during target controlled infusion for cardiac surgery with cardiopulmonary bypass. Br J Anaesth. 2012 Nov;109(5):698–706.
  • Dawson PJ, Bjorksten AR, Blake DW, et al. The effects of cardiopulmonary bypass on total and unbound plasma concentrations of propofol and midazolam. J Cardiothorac Vasc Anesth. 1997 Aug;11(5):556–561.
  • Himebauch AS, Nicolson SC, Sisko M, et al. Skeletal muscle and plasma concentrations of cefazolin during cardiac surgery in infants. J Thorac Cardiovasc Surg. 2014 Dec;148(6):2634–2641.
  • Anderson KB, Poloyac SM, Kochanek PM, et al. Effect of hypothermia and targeted temperature management on drug disposition and response following cardiac arrest: a comprehensive review of preclinical and clinical investigations. Ther Hypothermia Temp Manag. 2016 Dec;6(4):169–179.
  • Smits A, Annaert P, Van Cruchten S, et al. A physiology-based pharmacokinetic framework to support drug development and dose precision during therapeutic hypothermia in neonates. Front Pharmacol. 2020;11:587. doi:10.3389/fphar.2020.00587
  • Favie LMA, de Haan TR, Bijleveld YA, et al. Prediction of drug exposure in critically Ill encephalopathic neonates treated with therapeutic hypothermia based on a pooled population pharmacokinetic analysis of seven drugs and five metabolites. Clin Pharmacol Ther. 2020 Nov;108(5):1098–1106.
  • Lutz IC, Allegaert K, de Hoon JN, et al. Pharmacokinetics during therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy: a literature review. BMJ Paediatr Open. 2020;4(1):e000685. DOI:10.1136/bmjpo-2020-000685
  • Zimmerman KO, Wu H, Laughon M, et al. Dexmedetomidine pharmacokinetics and a new dosing paradigm in infants supported with cardiopulmonary bypass. Anesth Analg. 2019 Dec;129(6):1519–1528.
  • Zuppa AF, Nicolson SC, Wilder NS, et al. Results of a phase 1 multicentre investigation of dexmedetomidine bolus and infusion in corrective infant cardiac surgery. Br J Anaesth. 2019 Dec;123(6):839–852.
  • Wilkinson GR. Pharmacokinetics of drug disposition: hemodynamic considerations. Ann Rev Pharmacol. 1975;15(1):11–27. doi:10.1146/annurev.pa.15.040175.000303
  • Miyamoto T, Karimov JH, Fukamachi K. Acute and chronic effects of continuous-flow support and pulsatile-flow support. Artif Organs. 2019 Jul;43(7):618–623. doi: 10.1111/aor.13446
  • Mitchell IM, Pollock JC, Jamieson MP. The effects of congenital heart disease and cardiac surgery on liver blood flow in children. Perfusion. 1995 Jul;10(4):210–218. doi: 10.1177/026765919501000403
  • Denault AY, Azzam MA, Beaubien-Souligny W. Imaging portal venous flow to aid assessment of right ventricular dysfunction. Can J Anaesth. 2018 Nov;65(11):1260–1261. doi: 10.1007/s12630-018-1125-z
  • Zhu D, Yu H, Zhou Y, et al. Feasibility of measuring renal blood flow using transesophageal echocardiography in pediatric patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2012 Feb;26(1):39–45.
  • Grassin-Delyle S, Couturier R, Abe E, et al. A practical tranexamic acid dosing scheme based on population pharmacokinetics in children undergoing cardiac surgery. Anesthesiology. 2013 Apr;118(4):853–862.
  • Kapitein B, van Saet AW, Golab HD, et al. Does pharmacotherapy influence the inflammatory responses during cardiopulmonary bypass in children? J Cardiovasc Pharmacol. 2014 Aug;64(2):191–197.
  • Kozik DJ, Tweddell JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2006 Jun;81(6):S2347–54. doi: 10.1016/j.athoracsur.2006.02.073
  • Alcaraz AJ, Sancho L, Manzano L, et al. Newborn patients exhibit an unusual pattern of interleukin 10 and interferon gamma serum levels in response to cardiac surgery. J Thorac Cardiovasc Surg. 2002 Mar;123(3):451–458.
  • Alcaraz AJ, Manzano L, Sancho L, et al. Different proinflammatory cytokine serum pattern in neonate patients undergoing open heart surgery. Relevance of IL-8. J Clin Immunol. 2005 May;25(3):238–245.
  • Adiraju SKS, Shekar K, Fraser JF, et al. Effect of cardiopulmonary bypass on cytochrome P450 enzyme activity: implications for pharmacotherapy. Drug Metab Rev. 2018 May;50(2):109–124.
  • Vet NJ, de Hoog M, Tibboel D, et al. The effect of inflammation on drug metabolism: a focus on pediatrics. Drug Discov Today. 2011 May;16(9–10):435–442.
  • De Cock RF, Piana C, Krekels EH, et al. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011 May;67(Suppl 1):5–16.
  • Mian P, Valkenburg AJ, Allegaert K, et al. Population pharmacokinetic modeling of acetaminophen and metabolites in children after cardiac surgery with cardiopulmonary bypass. J Clin Pharmacol. 2019 Jun;59(6):847–855.
  • Hill KD, Sampson MR, Li JS, et al. Pharmacokinetics of intravenous sildenafil in children with palliated single ventricle heart defects: effect of elevated hepatic pressures. Cardiol Young. 2016 Feb;26(2):354–362.
  • Su F, El-Komy MH, Hammer GB, et al. Population pharmacokinetics of etomidate in neonates and infants with congenital heart disease. Biopharm Drug Dispos. 2015 Mar;36(2):104–114.
  • Hasija S, Chauhan S, Jain P, et al. Comparison of speed of inhalational induction in children with and without congenital heart disease. Ann Card Anaesth. 2016 Jul;19(3):468–474.
  • Jankovic SM. A critique of pharmacokinetic calculators for drug dosing individualization. Eur J Drug Metab Pharmacokinet. 2020 Apr;45(2):157–162. doi: 10.1007/s13318-019-00589-1
  • Gambus PL, Troconiz IF. Pharmacokinetic-pharmacodynamic modelling in anaesthesia. Br J Clin Pharmacol. 2015 Jan;79(1):72–84. doi: 10.1111/bcp.12286
  • Vogt W. Evaluation and optimisation of current milrinone prescribing for the treatment and prevention of low cardiac output syndrome in paediatric patients after open heart surgery using a physiology-based pharmacokinetic drug-disease model. Clin Pharmacokinet. 2014 Jan;53(1):51–72. doi: 10.1007/s40262-013-0096-z
  • Ayyar VS, Jusko WJ, Barker EL. Transitioning from basic toward systems pharmacodynamic models: lessons from corticosteroids. Pharmacol Rev. 2020 Apr;72(2):414–438. doi: 10.1124/pr.119.018101
  • Van Driest SL, Marshall MD, Hachey B, et al. Pragmatic pharmacology: population pharmacokinetic analysis of fentanyl using remnant samples from children after cardiac surgery. Br J Clin Pharmacol. 2016 Jun;81(6):1165–1174.