161
Views
0
CrossRef citations to date
0
Altmetric
Review

An update on the pharmacogenetic considerations when prescribing dopamine receptor agonists for Parkinson’s disease

, ORCID Icon, , , &
Pages 447-460 | Received 02 May 2023, Accepted 15 Aug 2023, Published online: 24 Aug 2023

References

  • Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;33(1):1–21. doi: 10.1038/nrdp.2017.13
  • Ou Z, Pan J, Tang S, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847. doi: 10.3389/fpubh.2021.776847
  • Vuletic V, Racki V, Chudy D, et al. Deep brain stimulation in non-motor symptoms of neurodegenerative diseases. In: Neurostimulation and neuromodulation in contemporary therapeutic practice. IntechOpen; 2020.
  • Angot E, Brundin P. Dissecting the potential molecular mechanisms underlying α-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:S143–S147. doi: 10.1016/S1353-8020(09)70802-8
  • Giuliano C, Cerri S, Cesaroni V, et al. Relevance of biochemical deep phenotyping for a personalised approach to Parkinson’s disease. Neuroscience. 2023;511:100–109. doi: 10.1016/j.neuroscience.2022.12.019
  • Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808. doi: 10.1136/jnnp-2019-322338
  • Carrarini C, Russo M, Dono F, et al. A stage-based approach to therapy in parkinson’s disease. Biomolecules. 2019;9(8):388. doi: 10.3390/biom9080388
  • Hernández-Parra H, Cortés H, Avalos-Fuentes JA, et al. Repositioning of drugs for Parkinson’s disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology. 2022;20(1):413. doi: 10.1186/s12951-022-01612-5
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–2508.
  • Liu J-S, Chen Y, Shi D-D, et al. Pharmacogenomics—a New frontier for individualized treatment of Parkinson’sDisease. Curr Neuropharmacol. 2022;21(3):536–546. doi: 10.2174/1570159X21666221229154830
  • Politi C, Ciccacci C, Novelli G, et al. Genetics and treatment response in Parkinson’s disease: An Update on pharmacogenetic studies. Neuromol Med. 2018;20(1):1–17. doi: 10.1007/s12017-017-8473-7
  • Agúndez JAG, García-Martín E, Alonso-Navarro H, et al. Anti-Parkinson’s disease drugs and pharmacogenetic considerations. Expert Opinion On Drug Metabolism & Toxicology. 2013;9(7):859–874. doi: 10.1517/17425255.2013.789018
  • Aldred J, Nutt JG. Levodopa. Encyclopedia of movement disorders. Academic Press. 2010;p. 132–137. doi: 10.1016/B978-0-12-374105-9.00340-3
  • Salat D, Tolosa E. Levodopa in the treatment of Parkinson’s disease: Current status and new developments. J Parkinsons Dis. 2013;3(3):255–269. doi: 10.3233/JPD-130186
  • McLeod HL, Fang L, Luo X, et al. Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J Pharmacol Exp Ther. 1994;270(1):26–29.
  • Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, et al. COMT gene and risk for Parkinson’s disease: A systematic review and meta-analysis. Pharmacogenet Genomics. 2014;24(7):331–339. doi: 10.1097/FPC.0000000000000056
  • Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6(3):243–250. doi: 10.1097/00008571-199606000-00007
  • Białecka M, Droździk M, Kłodowska-Duda G, et al. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol Scand. 2004;110(4):260–266. doi: 10.1111/j.1600-0404.2004.00315.x
  • Sampaio TF, dos Santos EUD, de Lima GDC, et al. MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease. J Clin Pharmacol. 2018;58(7):920–926. doi: 10.1002/jcph.1096
  • Bialecka M, Kurzawski M, Klodowska-Duda G, et al. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson's disease, levodopa treatment response, and complications. Pharmacogenet Genomics. 2008;18(9):815–821. doi: 10.1097/FPC.0b013e328306c2f2
  • Cheshire P, Bertram K, Ling H, et al. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegener Dis. 2013;13(1):24–28. doi: 10.1159/000351097
  • Lee MS, Lyoo CH, Ulmanen I, et al. Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neurosci Lett. 2001;298(2):131–134. doi: 10.1016/S0304-3940(00)01749-3
  • Contin M, Martinelli P, Mochi M, et al. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic-pharmacodynamic pattern in patient with parkinson’s disease. Mov Disord. 2005;20(6):734–739. doi: 10.1002/mds.20410
  • De Lau LML, Verbaan D, Marinus J, et al. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov Disord. 2012;27(1):132–135. doi: 10.1002/mds.23805
  • Watanabe M, Harada S, Nakamura T, et al. Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology. 2003;48:190–193. doi: 10.1159/000074637
  • Vallelunga A, Flaibani R, Formento-Dojot P, et al. Role of genetic polymorphisms of the dopaminergic system in Parkinson’s disease patients with impulse control disorders. Parkinsonism Relat Disord. 2012;18(4):397–399. doi: 10.1016/j.parkreldis.2011.10.019
  • Frauscher B, Högl B, Maret S, et al. Association of daytime sleepiness with COMT polymorphism in patients with Parkinson disease: A pilot study. Sleep. 2004;27(4):733–736. doi: 10.1093/sleep/27.4.733
  • Redenšek S, Flisar D, Kojovic M, et al. Dopaminergic pathway genes influence adverse events related to dopaminergic treatment in Parkinson’s disease. Front Pharmacol. 2019;10:8. doi: 10.3389/fphar.2019.00008
  • Devos D, Lejeune S, Cormier-Dequaire F, et al. Dopa-decarboxylase gene polymorphisms affect the motor response to l-dopa in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(2):170–175. doi: 10.1016/j.parkreldis.2013.10.017
  • Kraemmer J, Smith K, Weintraub D, et al. Clinical-genetic model predicts incident impulse control disorders in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(10):1106–1111. doi: 10.1136/jnnp-2015-312848
  • Rieck M, Schumacher-Schuh AF, Altmann V, et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics. 2012;13(15):1701–1710. doi: 10.2217/pgs.12.149
  • Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology. 2001;56(12):1757–1759. doi: 10.1212/WNL.56.12.1757
  • Kaiser R, Hofer A, Grapengiesser A, et al. L-Dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology. 2003;60(11):1750–1755. doi: 10.1212/01.WNL.0000068009.32067.A1
  • dos Santos EUD, Sampaio TF, Tenório dos Santos AD, et al. The influence of SLC6A3 and DRD2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson’s disease. J Pharm Pharmacol. 2019;71(2):206–212. doi: 10.1111/jphp.13031
  • Lee JY, Cho J, Lee EK, et al. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(1):73–79. doi: 10.1002/mds.23400
  • Paus S, Seeger G, Brecht HM, et al. Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Mov Disord. 2004;19(6):705–707. doi: 10.1002/mds.20134
  • Rissling I, Geller F, Bandmann O, et al. Dopamine receptor gene polymorphisms in Parkinson’s disease patients reporting “sleep attacks”. Mov Disord. 2004;19(11):1279–1284. doi: 10.1002/mds.20245
  • Makoff AJ, Graham JM, Arranz MJ, et al. Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics. 2000;10(1):43–48. doi: 10.1097/00008571-200002000-00006
  • Zappia M, Annesi G, Nicoletti G, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: An exploratory study. Arch Neurol. 2005;62(4):601–605. doi: 10.1001/archneur.62.4.601
  • Oliveri RL, Annesi G, Zappia M, et al. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology. 1999;53(7):1425–1430. doi: 10.1212/WNL.53.7.1425
  • Strong JA, Dalvi A, Revilla FJ, et al. Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2006;21(5):654–659. doi: 10.1002/mds.20785
  • Rieck M, Schumacher-Schuh AF, Altmann V, et al. Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson’s disease. Pharmacogenomics J. 2018;18(1):196–200. doi: 10.1038/tpj.2016.79
  • Krishnamoorthy S, Rajan R, Banerjee M, et al. Dopamine D3 receptor Ser9Gly variant is associated with impulse control disorders in Parkinson’s disease patients. Parkinsonism Relat Disord. 2016;30:13–17. doi: 10.1016/j.parkreldis.2016.06.005
  • Goetz CG, Burke PF, Leurgans S, et al. Genetic variation analysis in Parkinson disease patients with and without hallucinations: Case-control study. Arch Neurol. 2001;58(2):209–213. doi: 10.1001/archneur.58.2.209
  • Becker ML, Visser LE, Van Schaik RHN, et al. OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics. 2011;12(1):79–82. doi: 10.1007/s10048-010-0254-5
  • Schumacher-Schuh AF, Francisconi C, Altmann V, et al. Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson’s disease. Int J Neuropsychopharmacol. 2013;16(6):1251–1258. doi: 10.1017/S1461145712001666
  • Moreau C, Meguig S, Corvol JC, et al. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain. 2015;138(5):1271–1283. doi: 10.1093/brain/awv063
  • Altmann V, Schumacher-Schuh AF, Rieck M, et al. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson’s disease. Pharmacogenomics. 2016;17:481–488. doi: 10.2217/pgs.15.183
  • Kaplan N, Vituri A, Korczyn AD, et al. Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. J Mol Neurosci. 2014;53(2):183–188. doi: 10.1007/s12031-014-0276-9
  • Purcaro C, Vanacore N, Moret F, et al. DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson’s disease. Neurosci Lett. 2019;690:83–88. doi: 10.1016/j.neulet.2018.10.021
  • Schumacher-Schuh AF, Altmann V, Rieck M, et al. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. Pharmacogenomics J. 2014;14(3):289–294. doi: 10.1038/tpj.2013.37
  • Corvol JC, Bonnet C, Charbonnier-Beaupel F, et al. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: a randomized crossover clinical trial. Ann Neurol. 2011;69(1):111–118. doi: 10.1002/ana.22155
  • Chong DJ, Suchowersky O, Szumlanski C, et al. The relationship between COMT genotype and the clinical effectiveness of tolcapone, a COMT inhibitor, in patients with Parkinson’s disease. Clin Neuropharmacol. 2000;23(3):143–148. doi: 10.1097/00002826-200005000-00003
  • Ferrari M, Martignoni E, Blandini F, et al. Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. Eur J Clin Pharmacol. 2012;68(11):1493–1499. doi: 10.1007/s00228-012-1281-y
  • Acuña G, Foernzler D, Leong D, et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. Pharmacogenomics J. 2002;2(5):327–334. doi: 10.1038/sj.tpj.6500123
  • Masellis M, Collinson S, Freeman N, et al. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: a pharmacogenetic study. Brain. 2016;139(7):2050–2062. doi: 10.1093/brain/aww109
  • Arbouw MEL, Movig KLL, Egberts TCG, et al. Clinical and pharmacogenetic determinants for the discontinuation of non-ergoline dopamine agonists in Parkinson’s disease. Eur J Clin Pharmacol. 2009;65(12):1245–1251. doi: 10.1007/s00228-009-0708-6
  • Liu YZ, Tang BS, Yan XX, et al. Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. Eur J Clin Pharmacol [Internet]. 2009;65:679–683. doi: 10.1007/s00228-009-0658-z
  • Xu S, Liu J, Yang X, et al. Association of the DRD2 CAn-STR and DRD3 Ser9Gly polymorphisms with Parkinson’s disease and response to dopamine agonists. J Neurol Sci. 2017;372:433–438. doi: 10.1016/j.jns.2016.08.005
  • Kalinderi K, Fidani L, Katsarou Z, et al. Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract. 2011;65(12):1289–1294. doi: 10.1111/j.1742-1241.2011.02793.x
  • Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: A practical tutorial. Evid Based Ment Health. 2019;22(4):153–160. doi: 10.1136/ebmental-2019-300117
  • DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139–145. doi: 10.1016/j.cct.2015.09.002
  • Hedges LV. Meta-analysis. J Educ Behav Stat. 1992;17(4):279–296. doi: 10.3102/10769986017004279
  • Wilkins RC, Lis JT. GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res. 1998;26(11):2672–2678. doi: 10.1093/nar/26.11.2672
  • Boørglum AD, Kirov G, Craddock N, et al. Possible parent-of-origin effect of dopa decarboxylase in susceptibility to bipolar affective disorder. Am J Med Genet. 2003;117B:18–22. doi: 10.1002/ajmg.b.10030
  • Kurzawski M, Białecka M, Droździk M. Pharmacogenetic considerations in the treatment of Parkinson’s disease. Neurodegener Dis Manag. 2015;5(1):27–35. doi: 10.2217/nmt.14.38
  • Paus S, Grünewald A, Klein C, et al. The DRD2 TaqIA polymorphism and demand of dopaminergic medication in Parkinson’s disease. Mov Disord. 2008;23(4):599–602. doi: 10.1002/mds.21901
  • Baik JH. Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep. 2013;46(11):519–526. doi: 10.5483/BMBRep.2013.46.11.207
  • Clinical Annotation for rs1799732 (DRD2); levodopa; Parkinson Disease (level 3 Toxicity) [Internet]. [cited 2023 Mar 16]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1448525458
  • Jeanneteau F, Funalot B, Jankovic J, et al. A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci U S A. 2006;103(28):10753–10758. doi: 10.1073/pnas.0508189103
  • Clinical Annotation for rs6280 (DRD3); levodopa; gastrointestinal toxicity, Hallucinations and Parkinson Disease (level 3 Toxicity) [Internet]. [cited 2023 Mar 15]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1448525452
  • Vuletić V, Rački V, Papić E, et al. A systematic review of parkinson’s disease pharmacogenomics: Is there time for translation into the clinics? Int J Mol Sci. 2021;22(13):7213. doi: 10.3390/ijms22137213
  • Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004;308(1):2–9. doi: 10.1124/jpet.103.053298
  • Clinical Annotation for rs622342 (SLC22A1); amantadine, Anticholinergics, Dopamine agonists, levodopa or selegiline; Parkinson Disease (level 3 Dosage, Toxicity) [Internet]. [cited 2023 Mar 16]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1448101086
  • van de Giessen EM, de Win MML, Tanck MWT, et al. Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med. 2009;50(1):45–52. doi: 10.2967/jnumed.108.053652
  • Clinical Annotation for rs3836790 (SLC6A3); levodopa; Parkinson Disease (level 3 Efficacy) [Internet]. [cited 2023 Mar 16]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1444703906
  • Feldman B, Chapman J, Korczyn AD. Apolipoprotein ε4 advances appearance of psychosis in patients with Parkinson’s disease. Acta Neurol Scand. 2006;113(1):14–17. doi: 10.1111/j.1600-0404.2005.00535.x
  • Fujii C, Harada S, Ohkoshi N, et al. Association between polymorphism of the cholecystokinin gene and idiopathic Parkinson’s disease. Clinical Genetics. 1999;56(5):395–400. doi: 10.1034/j.1399-0004.1999.560508.x
  • Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, et al. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics. 2015;16. doi: 10.2217/pgs.15.23
  • Clinical Annotation for rs4704559 (HOMER1); levodopa; Parkinson Disease (level 3 Toxicity) [Internet]. [cited 2023 Mar 16]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1444680131
  • Erga AH, Dalen I, Ushakova A, et al. Dopaminergic and opioid pathways associated with impulse control disorders in Parkinson’s disease. Front Neurol. 2018;9:109. doi: 10.3389/fneur.2018.00109
  • Borges N. Tolcapone in Parkinson’s disease: Liver toxicity and clinical efficacy. Expert Opin Drug Saf. 2005;4(1):69–73. doi: 10.1517/14740338.4.1.69
  • Kiss LE, Soares-Da-Silva P. Medicinal chemistry of catechol O -methyltransferase (COMT) inhibitors and their therapeutic utility. J Med Chem. 2014;57(21):8692–8717. doi: 10.1021/jm500572b
  • Loureiro AI, Rocha F, Santos AT, et al. Absorption, metabolism and excretion of opicapone in human healthy volunteers. Br J Clin Pharmacol. 2022;88(10):4540–4551. doi: 10.1111/bcp.15383
  • Clinical Annotation for rs4680 (COMT); entacapone; Parkinson Disease (level 3 Efficacy) [Internet]. [cited 2023 Mar 17]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1444704400
  • Villeneuve L, Girard H, Fortier LC, et al. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther. 2003;307(1):117–128. doi: 10.1124/jpet.103.054072
  • Yamanaka H, Nakajima M, Katoh M, et al. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics. 2004;14(5):329–332. doi: 10.1097/00008571-200405000-00008
  • Kalgutkar AS, Dalvie DK, Castagnoli N, et al. Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes a and B: SAR studies on MAO substrates and inhibitors. Chem Res Toxicol. 2001;14(9):1139–1162. doi: 10.1021/tx010073b
  • Foley P, Gerlach M, Youdim MBH, et al. MAO-B inhibitors: multiple roles in the therapy of neurodegenerative disorders? Parkinsonism Relat Disord. 2000;6(1):25–47. doi: 10.1016/S1353-8020(99)00043-7
  • Schapira AHV, Fox SH, Hauser RA, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017;74(2):216–224. doi: 10.1001/jamaneurol.2016.4467
  • Jessen L, Kovalick LJ, Azzaro AJ. The selegiline transdermal system (Emsam): a therapeutic option for the treatment of major depressive disorder. P And T. 2008;33(4):212–246.
  • Puttrevu SK, Arora S, Polak S, et al. Physiologically based pharmacokinetic modeling of transdermal selegiline and its metabolites for the evaluation of disposition differences between healthy and special populations. Pharmaceutics. 2020;12(10):942. doi: 10.3390/pharmaceutics12100942
  • Guay DRP. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson’s disease. Am J Geriatr Pharmacother. 2006;4(4):330–346. doi: 10.1016/j.amjopharm.2006.12.001
  • Carrascal-Laso L, Isidoro-García M, Ramos-Gallego I, et al. Review: influence of the cyp450 genetic variation on the treatment of psychotic disorders. J Clin Med. 2021;10(18):4275. doi: 10.3390/jcm10184275
  • Clinical Annotation for rs1076560 (DRD2); rasagiline; Parkinson Disease (level 3 Efficacy) [Internet]. [cited 2023 Mar 17]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1448100444
  • Clinical Annotation for rs2283265 (DRD2); rasagiline; Parkinson Disease (level 3 Efficacy) [Internet]. [cited 2023 Mar 17]. Available from: https://www.pharmgkb.org/clinicalAnnotation/1448100464
  • Uitti RJ, Ahlskog JE. Comparative review of dopamine receptor agonists in Parkinsonʼs disease. CNS Drugs. 1996;5(5):369–388. doi: 10.2165/00023210-199605050-00006
  • Korczyn AD, Brunt ER, Larsen JP, et al. A 3-year randomized trial of ropinirole and bromocriptine in early Parkinson’s disease. Neurology. 1999;53:364–370. doi: 10.1212/WNL.53.2.364
  • Clinical Annotation for rs6280 (DRD3); pramipexole; Parkinson Disease (level 3 Efficacy) [Internet]. [cited 2023 Mar 17]. Available from: https://www.pharmgkb.org/clinicalAnnotation/655385037
  • Theken KN, Lee CR, Gong L, et al. Clinical pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal anti-Inflammatory drugs. Clin Pharmacol Ther. 2020;108(2):191–200. doi: 10.1002/cpt.1830
  • Rocha JF, Almeida L, Falcão A, et al. Opicapone: a short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects. Br J Clin Pharmacol. 2013;76(5):763–775. doi: 10.1111/bcp.12081
  • Bette S, Shpiner DS, Singer C, et al. Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: A review of the current clinical evidence. Ther Clin Risk Manag. 2018;14:1737–1745.
  • Baker DE, Kim AP. Formulary drug review: Safinamide. Hosp Pharm. 2017;52(8):532–543. doi: 10.1177/0018578717726046
  • Leuratti C, Sardina M, Ventura P, et al. Disposition and metabolism of safinamide, a novel drug for parkinson’s disease, in healthy male volunteers. Pharmacology. 2013;92:207–216. doi: 10.1159/000354805
  • Rinne UK, Bracco F, Chouza C, et al. Cabergoline in the treatment of early Parkinson’s disease: results of the first year of treatment in a double-blind comparison of cabergoline and levodopa. The PKDS009 Collaborative study group. Neurology. 1997;48(2):363–368. doi: 10.1212/WNL.48.2.363
  • Del Dotto P, Bonuccelli U. Clinical pharmacokinetics of cabergoline. Clin Pharmacokinet. 2003;42(7):633–645. doi: 10.2165/00003088-200342070-00003
  • Via MA, Chandra H, Araki T, et al. Bromocriptine approved as the first medication to target dopamine activity to improve glycemic control in patients with type 2 diabetes. Diabetes Metab Syndr Obesity. 2010;3:43–48. doi: 10.2147/DMSO.S9575
  • Blin O. The pharmacokinetics of pergolide in Parkinsonʼs disease. Curr Opin Neurol. 2003;16(Suppl 1):S9–12. doi: 10.1097/00019052-200312001-00003
  • Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39(4):243–254. doi: 10.2165/00003088-200039040-00001
  • Singh R, Parmar M. StatPearls. Pramipexole. Orlando, Florida, United States: StatPearls Publishing; 2023.
  • Contin M, Lopane G, Mohamed S, et al. Clinical pharmacokinetics of pramipexole, ropinirole and rotigotine in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2019;61:111–117. doi: 10.1016/j.parkreldis.2018.11.007
  • Elshoff JP, Cawello W, Andreas JO, et al. No influence of the CYP2C19-selective inhibitor omeprazole on the pharmacokinetics of the dopamine receptor agonist rotigotine. Clin Pharmacol Drug Dev. 2014;3(3):187–193. doi: 10.1002/cpdd.78
  • Cacabelos R. Parkinson’s disease: from pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017;18(3):551. doi: 10.3390/ijms18030551
  • Crews KR, Monte AA, Huddart R, et al. Clinical pharmacogenetics Implementation Consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin Pharmacol Ther. 2021;110(4):888–896. doi: 10.1002/cpt.2149
  • Contin M, Lopane G, Belotti LMB, et al. Sex is the main determinant of levodopa clinical pharmacokinetics: evidence from a large series of levodopa therapeutic monitoring. J Parkinsons Dis. 2022;12(8):2519–2530. doi: 10.3233/JPD-223374
  • Mehanna R, Jankovic J. Young-onset Parkinson’s disease: Its unique features and their impact on quality of life. Parkinsonism Relat Disord. 2019;65:39–48. doi: 10.1016/j.parkreldis.2019.06.001
  • Wan Z, Wang X, Ma H, et al. Risk factors for motor complications in female patients with Parkinson’s disease. Neurol Sci. 2022;43(8):4735–4743. doi: 10.1007/s10072-022-05959-3
  • Scott NW, Macleod AD, Counsell CE. Motor complications in an incident Parkinson’s disease cohort. Eur J Neurol. 2016;23(2):304–312. doi: 10.1111/ene.12751
  • Bjornestad A, Forsaa EB, Pedersen KF, et al. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat Disord. 2016;22:48–53. doi: 10.1016/j.parkreldis.2015.11.007
  • Chung SJ, Lee Y, Lee JJ, et al. Rapid eye movement sleep behaviour disorder and striatal dopamine depletion in patients with Parkinson’s disease. Eur J Neurol. 2017;24(10):1314–1319. doi: 10.1111/ene.13388
  • van Deursen DN, van den Heuvel OA, Booij J, et al. Autonomic failure in Parkinson’s disease is associated with striatal dopamine deficiencies. J Neurol. 2020;267:1922–1930. doi: 10.1007/s00415-020-09785-5
  • Vriend C, van Balkom TD, van Druningen C, et al. Processing speed is related to striatal dopamine transporter availability in Parkinson’s disease. NeuroImage Clin. 2020;26:102257. doi: 10.1016/j.nicl.2020.102257
  • Haapaniemi TH, Ahonen A, Torniainen P, et al. [123]β-CIT SPECT demonstrates decreased brain dopamine and serotonin transporter levels in untreated parkinsonian patients. Mov Disord. 2001;16(1):124–130. doi: 10.1002/1531-8257(200101)16:1<124:AID-MDS1007>3.0.CO;2-R
  • Picconi B, Paillé V, Ghiglieri V, et al. L-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis. 2008;29(2):327–335. doi: 10.1016/j.nbd.2007.10.001
  • Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008;9(9):665–677. doi: 10.1038/nrn2471
  • Cross B, Turner R, Pirmohamed M. Polygenic risk scores: An overview from bench to bedside for personalised medicine. Front Genet. 2022;13:1000667. doi: 10.3389/fgene.2022.1000667
  • Simona A, Song W, Bates DW, et al. Polygenic risk scores in pharmacogenomics: opportunities and challenges—a mini review. Front Genet. 2023;14:1217049. doi: 10.3389/fgene.2023.1217049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.