70
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the impact of ABCG2 polymorphisms on drug pharmacokinetics: focus on rosuvastatin and allopurinol

& ORCID Icon
Pages 519-528 | Received 25 Mar 2024, Accepted 28 May 2024, Published online: 04 Jun 2024

References

  • Delpierre C, Lefevre T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front Sociol. 2023;8:1112159. doi: 10.3389/fsoc.2023.1112159
  • Lonergan M, Senn SJ, McNamee C, et al. Defining drug response for stratified medicine. Drug Discov Today. 2017 Jan;22(1):173–179. doi: 10.1016/j.drudis.2016.10.016
  • Turner RM, Park BK, Pirmohamed M. Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2015 Jul;7(4):221–241. doi: 10.1002/wsbm.1302
  • Johnson JA. Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet. 2003 Nov;19(11):660–666. doi: 10.1016/j.tig.2003.09.008
  • Cecchin E, Stocco G. Pharmacogenomics and personalized medicine. Genes (Basel). 2020 Jun 22;11(6):679. doi: 10.3390/genes11060679
  • Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opinion Drug Metabol Toxicolo. 2021 Apr;17(4):369–396. doi: 10.1080/17425255.2021.1876661
  • Alam A, Locher KP. Structure and mechanism of human ABC transporters. Annu Rev Biophys. 2023 May 9;52(1):275–300. doi: 10.1146/annurev-biophys-111622-091232
  • Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat. 2022 Sep;43(9):1162–1182. doi: 10.1002/humu.24418
  • Cascorbi I, Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol Biol. 2010;596:95–121.
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001 Jul;11(7):1156–1166. doi: 10.1101/gr.184901
  • Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8(1):67–113. doi: 10.1146/annurev.cb.08.110192.000435
  • Davidson AL, Dassa E, Orelle C, et al. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev. 2008 Jun;72(2):317–364. table of contents. doi: 10.1128/MMBR.00031-07
  • Walker JE, Saraste M, Runswick MJ, et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x
  • Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015;7:14. doi: 10.12703/P7-14
  • Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998 Dec 22;95(26):15665–15670. doi: 10.1073/pnas.95.26.15665
  • Allikmets R, Schriml LM, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998 Dec 1;58(23):5337–5339.
  • Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDnas which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 1999 Jan 1;59(1):8–13.
  • Bailey-Dell KJ, Hassel B, Doyle LA, et al. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta. 2001 Sep 21;1520(3):234–241. doi: 10.1016/S0167-4781(01)00270-6
  • Omasits U, Ahrens CH, Muller S, et al. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014 Mar 15;30(6):884–886. doi: 10.1093/bioinformatics/btt607
  • Taylor NMI, Manolaridis I, Jackson SM, et al. Structure of the human multidrug transporter ABCG2. Nature. 2017 Jun 22;546(7659):504–509. doi: 10.1038/nature22345
  • Wong K, Briddon SJ, Holliday ND, et al. Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle imaging techniques. Biochim Biophys Acta. 2016 Jan;1863(1):19–29. doi: 10.1016/j.bbamcr.2015.10.002
  • Yu Q, Ni D, Kowal J, et al. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat Commun. 2021 Jul 19;12(1):4376. doi: 10.1038/s41467-021-24651-2
  • Robey RW, To KK, Polgar O, et al. ABCG2: a perspective. Adv Drug Deliv Rev. 2009 Jan 31;61(1):3–13. doi: 10.1016/j.addr.2008.11.003
  • Eckenstaler R, Benndorf RA. 3D structure of the transporter ABCG2-what’s new? Br J Pharmacol. 2020 Apr;177(7):1485–1496. doi: 10.1111/bph.14991
  • Drozdzik M, Busch D, Lapczuk J, et al. Protein abundance of clinically relevant drug transporters in the human liver and intestine: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2019 May;105(5):1204–1212. doi: 10.1002/cpt.1301
  • Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001 Apr 15;61(8):3458–3464.
  • Woodward OM, Kottgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA. 2009 Jun 23;106(25):10338–10342. doi: 10.1073/pnas.0901249106
  • Zhang W, Mojsilovic-Petrovic J, Andrade MF, et al. The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J. 2003 Nov;17(14):2085–2087. doi: 10.1096/fj.02-1131fje
  • Cooray HC, Blackmore CG, Maskell L, et al. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport. 2002 Nov 15;13(16):2059–2063. doi: 10.1097/00001756-200211150-00014
  • Mao Q. BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res. 2008 Jun;25(6):1244–1255. doi: 10.1007/s11095-008-9537-z
  • Jonker JW, Merino G, Musters S, et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005 Feb;11(2):127–129. doi: 10.1038/nm1186
  • Horsey AJ, Cox MH, Sarwat S, et al. The multidrug transporter ABCG2: still more questions than answers. Biochem Soc Trans. 2016 Jun 15;44(3):824–830. doi: 10.1042/BST20160014
  • van Herwaarden AE, Wagenaar E, Merino G, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007 Feb;27(4):1247–1253. doi: 10.1128/MCB.01621-06
  • Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002 Jan 15;99(2):507–512. doi: 10.1182/blood.V99.2.507
  • Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004 Sep 28;101(39):14228–14233. doi: 10.1073/pnas.0400067101
  • Ho MM, Ng AV, Lam S, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007 May 15;67(10):4827–4833. doi: 10.1158/0008-5472.CAN-06-3557
  • Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010 Apr 24;86(17–18):631–637. doi: 10.1016/j.lfs.2010.02.012
  • Mo W, Zhang JT. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol. 2012;3(1):1–27.
  • Vihinen M. Nonsynonymous synonymous variants demand for a paradigm shift in genetics. Curr Genomics. 2023 Jun 23;24(1):18–23. doi: 10.2174/1389202924666230417101020
  • Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019 Apr 16;19(1):359. doi: 10.1186/s12885-019-5572-x
  • Homolya L. Medically important alterations in transport function and trafficking of ABCG2. Int J Mol Sci. 2021 Mar 10;22(6):2786. doi: 10.3390/ijms22062786
  • Poonkuzhali B, Lamba J, Strom S, et al. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos. 2008 Apr;36(4):780–795. doi: 10.1124/dmd.107.018366
  • Vihinen M. When a synonymous variant is nonsynonymous. Genes (Basel). 2022 Aug 19;13(8):1485. doi: 10.3390/genes13081485
  • Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev. 1998 Apr;22(1):1–20. doi: 10.1111/j.1574-6976.1998.tb00358.x
  • Suominen L, Sjostedt N, Vellonen KS, et al. In vitro identification of decreased function phenotype ABCG2 variants. Eur J Pharm Sci. 2023 Sep 1;188:106527. doi: 10.1016/j.ejps.2023.106527
  • Heyes N, Kapoor P, Kerr ID. Polymorphisms of the multidrug pump ABCG2: a systematic review of their effect on protein expression, function, and drug pharmacokinetics. Drug Metab Dispos. 2018 Dec;46(12):1886–1899. doi: 10.1124/dmd.118.083030
  • Tamura A, Wakabayashi K, Onishi Y, et al. Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci. 2007 Feb;98(2):231–239. doi: 10.1111/j.1349-7006.2006.00371.x
  • Cooper-DeHoff RM, Niemi M, Ramsey LB, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin-associated musculoskeletal symptoms. Clin Pharmacol Ther. 2022 May;111(5):1007–1021. doi: 10.1002/cpt.2557
  • van der Pol KH, Nijenhuis M, Soree B, et al. Dutch pharmacogenetics working group guideline for the gene-drug interaction of ABCG2, HLA-B and allopurinol, and MTHFR, folic acid and methotrexate. Eur J Hum Genet. 2024 Feb;32(2):155–162. doi: 10.1038/s41431-022-01180-0
  • Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024 Jan;625(7993):92–100. doi: 10.1038/s41586-023-06045-0
  • Furukawa T, Wakabayashi K, Tamura A, et al. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res. 2009 Feb;26(2):469–479. doi: 10.1007/s11095-008-9752-7
  • Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther. 2002 Jun;1(8):611–616.
  • Kobayashi D, Ieiri I, Hirota T, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos. 2005 Jan;33(1):94–101. doi: 10.1124/dmd.104.001628
  • Kondo C, Suzuki H, Itoda M, et al. Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res. 2004 Oct;21(10):1895–1903. doi: 10.1023/B:PHAM.0000045245.21637.d4
  • Woodward OM, Tukaye DN, Cui J, et al. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci USA. 2013 Mar 26;110(13):5223–5228. doi: 10.1073/pnas.1214530110
  • Saranko H, Tordai H, Telbisz A, et al. Effects of the gout-causing Q141K polymorphism and a CFTR DeltaF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun. 2013 Jul 19;437(1):140–145. doi: 10.1016/j.bbrc.2013.06.054
  • Bartos Z, Homolya L. Identification of specific trafficking defects of naturally occurring variants of the human ABCG2 transporter. Front Cell Dev Biol. 2021;9:615729. doi: 10.3389/fcell.2021.615729
  • Basseville A, Tamaki A, Ierano C, et al. Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res. 2012 Jul 15;72(14):3642–3651. doi: 10.1158/0008-5472.CAN-11-2008
  • Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics. 2003 Jan;13(1):19–28. doi: 10.1097/00008571-200301000-00004
  • Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced ATPase activity in multidrug transporter ABCG2. Int J Cancer. 2004 Mar 20;109(2):238–246. doi: 10.1002/ijc.11669
  • Urquhart BL, Ware JA, Tirona RG, et al. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics. 2008 May;18(5):439–448. doi: 10.1097/FPC.0b013e3282f974dc
  • Morisaki K, Robey R, Özvegy-Laczka C, et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemoth Pharm. 2005 Aug;56(2):161–172. doi: 10.1007/s00280-004-0931-x
  • Keskitalo JE, Zolk O, Fromm MF, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009 Aug;86(2):197–203. doi: 10.1038/clpt.2009.79
  • Lehtisalo M, Taskinen S, Tarkiainen EK, et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol. 2023 Jan;89(1):242–252. doi: 10.1111/bcp.15485
  • Song Y, Lim HH, Yee J, et al. The association between ABCG2 421C>A (rs2231142) polymorphism and rosuvastatin pharmacokinetics: a systematic review and meta-analysis. Pharmaceutics. 2022 Feb 24;14(3). doi: 10.3390/pharmaceutics14030501
  • U.S. Food and drug administration: Highlights of prescribing information - CRESTOR (rosuvastatin) tablets [Internet]. Silver Spring (US-MD): FDA; 2023 Jan [cited 2024 Mar 25]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/021366s043s044lbl.pdf
  • Alrajeh K, Roman YM. The frequency of rs2231142 in ABCG2 among Asian subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics. 2023 Jan;24(1):15–26. doi: 10.2217/pgs-2022-0155
  • Davidson MH. Rosuvastatin safety: lessons from the FDA review and post-approval surveillance. Expert Opin Drug Saf. 2004 Nov;3(6):547–557. doi: 10.1517/14740338.3.6.547
  • Lönnberg KI, Tornio A, Hirvensalo P, et al. Real-world pharmacogenetics of statin intolerance: effects of SLCO1B1, ABCG2, and CYP2C9 variants. Pharmacogenet Genomics. 2023 Sep 1;33(7):153–160. doi: 10.1097/FPC.0000000000000504
  • Mercep I, Radman I, Trkulja V, et al. Loss of function polymorphisms in SLCO1B1 (c.521T>C, rs4149056) and ABCG2 (c.421C>A, rs2231142) genes are associated with adverse events of rosuvastatin: a case-control study. Eur J Clin Pharmacol. 2022 Feb;78(2):227–236. doi: 10.1007/s00228-021-03233-7
  • Hershfield MS, Callaghan JT, Tassaneeyakul W, et al. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther. 2013 Feb;93(2):153–158. doi: 10.1038/clpt.2012.209
  • Saito Y, Stamp LK, Caudle KE, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther. 2016 Jan;99(1):36–37. doi: 10.1002/cpt.161
  • DailyMed database: Highlights of prescribing information - allopurinol tablet by mylan pharmaceuticals inc. [Internet]. Bethesda (US-MD): National Library of Medicine (NLM); 2024 Mar [cited 2024 Mar 25]. Available from: https://dailymed.nlm.nih.gov/dailymed/getFile.cfm?setid=bdbf5ad4-86f2-4e9c-a51a-fb0c7220c480&type=pdf
  • Wen CC, Yee SW, Liang X, et al. Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response. Clin Pharmacol Ther. 2015 May;97(5):518–525. doi: 10.1002/cpt.89
  • Tin A, Marten J, Halperin Kuhns VL, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019 Oct;51(10):1459–1474. doi: 10.1038/s41588-019-0504-x
  • Li R, Miao L, Qin L, et al. A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk. Int J Clin Exp Pathol. 2015;8(9):9812–9823. doi: 10.4172/lpma.1000184
  • Pilon MO, Leclair G, Oussaid E, et al. An association study of ABCG2 rs2231142 on the concentrations of allopurinol and its metabolites. Clin Transl Sci. 2022 Aug;15(8):2024–2034. doi: 10.1111/cts.13318
  • Dalle Fratte C, Polesel J, Gagno S, et al. Impact of ABCG2 and ABCB1 polymorphisms on imatinib plasmatic exposure: an original work and meta-analysis. Int J Mol Sci. 2023 Feb 7;24(4):3303. doi: 10.3390/ijms24043303
  • Shriyan B, Mehta P, Patil A, et al. Role of ADME gene polymorphisms on imatinib disposition: results from a population pharmacokinetic study in chronic myeloid leukaemia. Eur J Clin Pharmacol. 2022 Aug;78(8):1321–1330. doi: 10.1007/s00228-022-03345-8
  • He S, Shao Q, Zhao J, et al. Population pharmacokinetics and pharmacogenetics analyses of imatinib in Chinese patients with chronic myeloid leukemia in a real-world situation. Cancer Chemother Pharmacol. 2023 Nov;92(5):399–410. doi: 10.1007/s00280-023-04581-0
  • Yang J, Wang J, Ning L, et al. Influence of UGT2B7, UGT1A4 and ABCG2 polymorphisms on the pharmacokinetics and therapeutic efficacy of lamotrigine in patients with epilepsy. Eur J Drug Metab Pharmacokinet. 2024 May 6. doi: 10.1007/s13318-024-00894-4
  • Susak Sporis I, Bozina N, Klarica Domjanovic I, et al. Breast cancer resistance protein polymorphism ABCG2 c.421C>A (rs2231142) moderates the effect of valproate on lamotrigine trough concentrations in adults with epilepsy. Fundam Clin Pharmacol. 2024 Apr;38(2):351–368. doi: 10.1111/fcp.12958
  • Nagy T, Toth A, Telbisz A, et al. The transport pathway in the ABCG2 protein and its regulation revealed by molecular dynamics simulations. Cell Mol Life Sci. 2021 Mar;78(5):2329–2339. doi: 10.1007/s00018-020-03651-3
  • Telbisz A, Hegedus C, Varadi A, et al. Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites. Drug Metab Dispos. 2014 Apr;42(4):575–585. doi: 10.1124/dmd.113.055731
  • Higashino T, Takada T, Nakaoka H, et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3(2):e000464. doi: 10.1136/rmdopen-2017-000464
  • Electronic medicines compendium (EMC): SPC - Crestor 5 mg film-coated tablets by AstraZeneca UK limited [Internet]. Leatherhead (GB-SRY): Datapharm Ltd.; 2023 Jul 13 [cited 2024 Mar 25]. Available from: https://www.medicines.org.uk/emc/product/6779/smpc#about-medicine
  • Lee YJ, Hong SJ, Kang WC, et al. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: secondary analysis of the randomised LODESTAR trial. BMJ. 2023 Oct 18;383:e075837. doi: 10.1136/bmj-2023-075837
  • Kukal S, Guin D, Rawat C, et al. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci. 2021 Nov;78(21–22):6887–6939. doi: 10.1007/s00018-021-03901-y
  • Turrini E, Haenisch S, Laechelt S, et al. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics. 2012 Mar;22(3):198–205. doi: 10.1097/FPC.0b013e328350012b
  • Kaehler M, Ruemenapp J, Gonnermann D, et al. MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells. Oncotarget. 2017 Nov 3;8(54):92018–92031. doi: 10.18632/oncotarget.21272
  • Kaehler M, Cascorbi I. Pharmacogenomics of impaired tyrosine kinase inhibitor response: lessons learned from chronic myelogenous leukemia. Front Pharmacol. 2021;12:696960. doi: 10.3389/fphar.2021.696960

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.