9,321
Views
33
CrossRef citations to date
0
Altmetric
Review

On-line monitoring of electrolytes in hemodialysis: on the road towards individualizing treatment

, , &
Pages 933-943 | Received 22 Jun 2016, Accepted 26 Aug 2016, Published online: 22 Sep 2016

References

  • Leypoldt JK. Solute fluxes in different treatment modalities. Nephrol Dial Transpl Nephrol Dial Transplant Theor Asp Ren Replace Ther. 2000;15:3–9.
  • Stiller S, Mann H. The Donnan effect in artificial kidney therapy. Life support systems: the journal of the European Society for Artificial Organs. 1985;4(4):305–318.
  • Locatelli F, La Milia V, Violo L, et al. Optimizing haemodialysate composition. Clin Kidney J. 2015;8:580–589.
  • Palmer BF. Individualizing the dialysate in the hemodialysis patient. Semin Dial. 2008;14:41–49.
  • Locatelli F, Buoncristiani U, Canaud B, et al. Haemodialysis with on-line monitoring equipment: tools or toys? Nephrol Dial Transpl. 2005;20:22–33.
  • Schindler JG, Schindler MM, Herna K, et al. Ion-selective electro-analyser with tubular solid contact flow-through sensors for continuous bioelectrochemically controlled hemodialysis of K+, Na+, Ca2+, Cl- and pH. Biomed Tech (Berl). 1991;36:271–284.
  • De Paula FM, Peixoto AJ, Pinto LV, et al. Clinical consequences of an individualized dialysate sodium prescription in hemodialysis patients. Kidney Int. 2004;66:1232–1238.
  • Usvyat LA, Barth C, Bayh I, et al. Interdialytic weight gain, systolic blood pressure, serum albumin, and C-reactive protein levels change in chronic dialysis patients prior to death. Kidney Int. 2013;84:149–157.
  • Tang H, Wong S, Chu K, et al. Sodium ramping reduces hypotension and symptoms during haemodialysis. Hong Kong Med J. 2006;1212:10–14.
  • Kovesdy CP, Regidor DL, Mehrotra R, et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol. 2007;2:999–1007.
  • Kyriazis J, Glotsos J, Bilirakis L, et al. Dialysate calcium profiling during hemodialysis: use and clinical implications. Kidney Int. 2002;61:276–287.
  • Ogden DA. A double blind crossover comparison of high and low sodium dialysis. Proc Clin Dial Transplant Forum. 1978;8:157–165.
  • Bijaphala S, Bell AJ, Bennett CA, et al. Comparison of high and low sodium bicarbonate and acetate dialysis in stable chronic hemodialysis patients. Clin Nephrol. 1985;23:179–183.
  • Oliver MJ, Edwards LJ, Churchill DN. Impact of sodium and ultrafiltration profiling on hemodialysis-related symptoms. J Am Soc Nephrol. 2001;12:151–156.
  • Gotch FA, Lam MA, Prowitt M, et al. Preliminary clinical results with sodium-volume modeling of hemodialysis therapy. Proc Clin Dial Transplant Forum. 1980;10:12–17.
  • Buemi M, Aloisi E, Coppolino G, et al. The effect of two different protocols of potassium haemodiafiltration on QT dispersion. Nephrol Dial Transpl. 2005;20:1148–1154.
  • McIntyre CW. Calcium balance during hemodialysis. Semin Dial. 2007;21:38–42.
  • Di Iorio B. Relevance of QT dispersion in haemodialysis patients. Nephrol Dial Transpl. 2010;25:1357–9; author reply 1360.
  • Drüeke TB, Touam M. Calcium balance in haemodialysis–do not lower the dialysate calcium concentration too much (con part). Nephrol Dial Transpl. 2009;24:2990–2993.
  • Kaku Y, Ookawara S, Miyazawa H, et al. New method for the approximation of corrected calcium concentrations in chronic kidney disease patients. Ther Apher Dial. 2016;20:46–52.
  • Daugirdas JT, Blake P, Ing TS, et al. Handbook of dialysis, fourth edition. Dial Transpl. 2007;36:322–322.
  • Polaschegg H-D. On-line dialyser clearance using conductivity. Pediatr Nephrol. 1995;9: S9–S11.
  • Locatelli F. On-line monitoring and convective treatment modalities: short-term advantages. Nephrol Dial Transplant. 1999;14:92–97.
  • Locatelli F, Andrulli S, Filippo SD, et al. Effect of on-line conductivity plasma ultrafiltrate kinetic modeling on cardiovascular stability of hemodialysis patients. Kidney Int. 1998;53:1052–1060.
  • Petitclerc T. Do dialysate conductivity measurements provide conductivity clearance or ionic dialysance? Kidney Int. 2006;70:1682–1686.
  • Gotch FA, Panlilio FM, Buyaki RA, et al. Mechanisms determining the ratio of conductivity clearance to urea clearance. Kidney Int Suppl. 2004;66:S3–S24.
  • Bosetto A, Bene B, Petitclerc T. Sodium management in dialysis by conductivity. Adv Ren Replace Ther. 1999;6:243–254.
  • Moret KE, Beerenhout CH, Kooman JP. Variations in predialytic plasma conductivity in dialysis patients: effect on ionic mass balance and blood pressure. Asaio J. 2011;57:53–61.
  • O’Hayre RP. Fuel cell fundamentals. John Wiley & Sons; 2006. p. 409.
  • Levy GB. Determination of sodium with ion-selective electrodes. Clin Chem. 1981;27:1435–1438.
  • Cowell DC, Browning DM, Clarke S, et al. Sodium and potassium ion selective electrodes: a review of theory and calibration. Med Lab Sci. 1985;42:252–261.
  • Burnett RW, Covington AK, Fogh-Andersen N, et al. Recommendations for measurement of and conventions for reporting sodium and potassium by ion-selective electrodes in undiluted serum, plasma or whole blood. International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). IFCC Sci Div Clin Chem Lab Med. 2000;38:1065–1071.
  • Gotch F, Evans M, Metzner K, et al. An on-line monitor of dialyzer Na and K flux in hemodialysis. ASAIO Trans. 1990;36:M359–61.
  • Lindsay RM, Schneditz D. Online monitoring and feedback-control, in replacement of renal function by dialysis. Dordrecht: Springer Netherlands; 2004. p. 555–584.
  • Oesch U, Ammann D, Simon W. Ion-selective membrane electrodes for clinical use. Clin Chem. 1986;32:1448–1459.
  • Mikhelson KN. Ion-selective electrodes. Berlin: Springer; 2013.
  • Dimeski G, Badrick T, John AS. Ion Selective Electrodes (ISEs) and interferences-A review. Clin Chim Acta. 2010;411:309–317.
  • Bakker E, Pretsch E. Peer reviewed: the new wave of ion-selective electrodes. Anal Chem. 2002;74:420 A–426 A.
  • International Electrochemical Commission. Medical electrical equipment-part 2-16: particular requirements for the basic safety and essential performance of haemodialysis, haemodiafiltration and haemofiltration equipment. Geneva (Switzerland): International Electrochemical Commission IEC; 2012.
  • Ružička J, Tjell JC. Ion-selective electrodes in continuous-flow analysis. Anal Chim Acta. 1969;47:475–482.
  • Rumenjak V, Milardović S, Kruhak I, et al. The study of some possible measurement errors in clinical blood electrolyte potentiometric (ISE) analysers. Clin Chim Acta. 2003;335:75–81.
  • Gál G, Gróf J, Kiss E. Continuous monitoring of the efficiency of haemodialysis by recording the UV transmittance of the dialysis solution. Acta Chir Hung. 1983;24:231–239.
  • Vasilevski AM, Kornilov NV. Monitoring the dialysis liquid during hemodialysis from the extinction spectra in the UV region. J Opt Technol. 1999;66:692.
  • Fridolin I, Magnusson M, Lindberg LG. Measurement of solutes in dialysate using UV absorption. Opt Diagnostics Sens Biol Fluids Glucose Cholest Monit. 2001;2:40–47.
  • Uhlin F, Fridolin I, Lindberg L-G, et al. Estimation of delivered dialysis dose by on-line monitoring of the ultraviolet absorbance in the spent dialysate. Am J Kidney Dis. 2003;41:1026–1036.
  • Castellarnau A, Werner M, Günthner R, et al. Real-time Kt/V determination by ultraviolet absorbance in spent dialysate: technique validation. Kidney Int. 2010;78:920–925.
  • Uhlin F, Fridolin I. Optical monitoring of dialysis dose. Model Control Dial Syst. 2013;2:867–916.
  • Cho DS, Olesberg JT, Flanigan MJ, et al. On-line near-infrared spectrometer to monitor urea removal in real time during hemodialysis. Appl Spectrosc. 2008;62:866–872.
  • Domingo WR, Klyne W. A photoelectric flame photometer. Biochem J. 1949;45:400–408.
  • Baker RW. The determination of calcium in serum by flame photometry. Biochem J. 1955;59:566–571.
  • Pungor E. Flame photometry theory. London: D. Van Nostrand Company, Ltd; 1967.
  • Anslyn EV. Supramolecular analytical chemistry. J Org Chem. 2007;72:687–699.
  • De Silva AP, Moody TS, Wright GD. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst. 2009;134:2385–2393.
  • He H, Mortellaro MA, Leiner MJP, et al. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal Chem. 2003;75:549–555.
  • He H, Mortellaro MA, Leiner MJP, et al. A fluorescent sensor with high selectivity and sensitivity for potassium in water. J Am Chem Soc. 2003;125:1468–1469.
  • He H, Jenkins K, Lin C. A fluorescent chemosensor for calcium with excellent storage stability in water. Anal Chim Acta. 2008;611:197–204.
  • Tusa JK, He H. Critical care analyzer with fluorescent optical chemosensors for blood analytes. J Mater Chem. 2005;15:2640.
  • OPTI LION Electrolyte Analyzer from OPTI Medical Systems; [cited 2016 Jun 22]. Available from: http://www.optimedical.com/products-services/opti-lion.html
  • Englich FV, Foo TC, Richardson AC, et al. Photoinduced electron transfer based ion sensing within an optical fiber. Sensors (Basel). 2011;11:9560–9572.
  • Cremers DA, Multari RA, Knight AK. Laser-induced breakdown spectroscopy. Encycl Anal Chem. New York: Wiley; 2000;11.
  • Radziemski L, Cremers D. A brief history of laser-induced breakdown spectroscopy: from the concept of atoms to LIBS 2012. Spectrochim Acta Part B At Spectrosc. 2013;87:3–10.
  • Knopp R, Scherbaum FJ, Kim JI. Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions. Anal Bioanal Chem. 1996;355:16–20.
  • Rehse SJ, Salimnia H, Miziolek AW. Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications. J Med Eng Technol. 2012;36:77–89.
  • Laser Induced Breakdown Spectroscopy (LIBS) - Ocean Optics; [cited 2016 Jun 22]. Available from: http://oceanoptics.com/product/laser-induced-breakdown-spectroscopy-libs/
  • Rakovský J, Čermák P, Musset O, et al. A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim Acta Part B At Spectrosc. 2014;101:269–287.
  • Klomp D, Wieringa F, Van Beijnum F, et al. LIBS SENSOR FOR IN-LINE K+, Na+ and Ca2+ MONITORING, in ERA-EDTA. Amsterdam: 51st ERA-EDTA Congress; 2014.
  • Wieringa FP. 61st Annual Conference of American Society for Artificial Internal Organs (ASAIO) “Ion Selective Sensing” The Netherlands: TNO Science & Industry, Lecture during ASAIO; 2015.
  • Daniel S. Cardiovascular protection: how to balance benefit/risk by fluid and electrolytes management. In: 53rd Congress ERA-EDTA, Vienna. 2016.
  • BWB Technologies. Available from: http://www.bwbtech.com/bwb_xp_flame_photometers_products.htm
  • Measurement of Dialysis Adequacy. Available from: http://ldiamon.eu/products/measurement-of-dialysis-adequacy/
  • Abeysinghe DC, Dasgupta S, Jackson HE, et al. Novel MEMS pressure and temperature sensors fabricated on optical fibers. J Micromech Microeng. 2002;12:229–235.
  • Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5:491–502.
  • Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–373.
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature. 2006;442:403–411.
  • Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12:2118–2134.
  • Soper SA, Brown K, Ellington A, et al. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron. 2006;21:1932–1942.
  • Evenhuis CJ, Guijt RM, Macka M, et al. Determination of inorganic ions using microfluidic devices. Electrophoresis. 2004;25:3602–3624.
  • Wang J, Chen G, Muck A. Movable contactless-conductivity detector for microchip capillary electrophoresis. Anal Chem. 2003;75:4475–4479.
  • Erickson KA, Wilding P. Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. Clin Chem. 1993;39:283–287.
  • Jacobs E, Vadasdi E, Sarkozi L, et al. Analytical evaluation of i-STAT portable clinical analyzer and use by nonlaboratory health-care professionals. Clin Chem. 1993;39:1069–1074.
  • Gault MH, Harding CE. Evaluation of i-STAT portable clinical analyzer in a hemodialysis unit. Clin Biochem. 1996;29:117–124.
  • Liao WY, Weng CH, Bin Lee G, et al. Development and characterization of an all-solid-state potentiometric biosensor array microfluidic device for multiple ion analysis. Lab Chip. 2006;6:1362–1368.
  • Johnson RD, Gavalas VG, Daunert S, et al. Microfluidic ion-sensing devices. Anal Chim Acta. 2008;613:20–30.
  • Qu S, Chen X, Chen D, et al. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations. Electrophoresis. 2006;27:4910–4918.
  • Kuswandi B, Huskens NJ, Verboom W. Optical sensing systems for microfluidic devices: A review. Anal Chim Acta. 2007;601:141–155.
  • Götz S, Karst U. Recent developments in optical detection methods for microchip separations. Anal Bioanal Chem. 2006;387:183–192.
  • Song F, Xiao J, Seo S-W. Heterogeneously integrated optical system for lab-on-a-chip applications. Sensors Actuators A Phys. 2013;195:148–153.
  • Caglar P, Tuncel SA, Malcik N, et al. A microchip sensor for calcium determination. Anal Bioanal Chem. 2006;386:1303–1312.
  • Chabinyc ML, Chiu DT, McDonald JC, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73:4491–4498.
  • Liu B-F, Ozaki M, Utsumi Y, et al. Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal Chem. 2003;75:36–41.
  • Jin Z, Su Y, Duan Y. An improved optical pH sensor based on polyaniline. Sensors Actuators B Chem. 2000;71:118–122.
  • Cote GL, Fox MD, Northrop RB. Noninvasive optical polarimetric glucose sensing using a true phase measurement technique. IEEE Trans Biomed Eng. 1992;39:752–756.
  • Sharma M, Frijns A, Mandamparambil R, et al. A spectroscopic technique for local temperature measurement in a micro-optofluidic system. IEEE Sens J. 2016;16:5232–5235.
  • Destandau E, Lefèvre JP, Chouai Fakhr Eddine A, et al. A novel microfluidic flow-injection analysis device with fluorescence detection for cation sensing. Application to potassium. Anal Bioanal Chem. 2007;387:2627–2632.
  • Shih T-K, Chen C-F, Ho J-R, et al. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron Eng. 2006;83:2499–2503.
  • Camou S, Fujita H, Fujii T. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip. 2003;3:40.
  • Ateya DA, Erickson JS, Howell PB, et al. The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem. 2008;391:1485–1498.
  • Mogensen KB, Klank H, Kutter JP. Recent developments in detection for microfluidic systems. Electrophoresis. 2004;25:3498–3512.
  • Estevez MC, Alvarez M, Lechuga LM. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon Rev. 2012;6:463–487.
  • Mogensen KB, Eriksson F, Gustafsson O, et al. Pure-silica optical waveguides, fiber couplers, and high-aspect ratio submicrometer channels for electrokinetic separation devices. Electrophoresis. 2004;25:3788–3795.
  • Chabinyc ML, Chiu DT, McDonald JC, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73:4491–4498.
  • Hofmann O, Wang X, Cornwell A, et al. Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection. Lab Chip. 2006;6:981–987.
  • Faye D, Lefevre J-P, Delaire JA, et al. A selective lead sensor based on a fluorescent molecular probe grafted on a PDMS microfluidic chip. J Photochem Photobiol Chem. 2012;234:115–122.
  • Hisamoto H, Yasuoka M, Terabe S. Integration of multiple-ion-sensing on a capillary-assembled microchip. Anal Chim Acta. 2006;556:164–170.
  • Hisamoto H, Nakashima Y, Kitamura C, et al. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device. Anal Chem. 2004;76:3222–3228.
  • Greenwood RN, Aldridge C, Cattell WR. Serial blood water estimations and in-line blood viscometry: the continuous measurement of blood volume during dialysis procedures. Clin Sci. 1984;66:575–583.
  • Oda M, Hokama S, Sugaya K, et al. New blood volume monitoring method for hemodialysis: A-V pressure gradient measurement by synchronized one-point reading. Artif Organs. 2004;28:683–689.
  • Chamney PW, Krämer M, Rode C, et al. A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 2002;61:2250–2258.
  • Maeda K, Shinzato T, Yoshida F, et al. Newly developed circulating blood volume-monitoring system and its clinical application for measuring changes in blood volume during hemofiltration. Artif Organs. 1986;10:452–459.
  • Dormanesh B, Tofangchiha S, Abouei V, et al. Design and construct an optical device to determine relative blood volume in patients undergoing hemodialysis. Iran Red Crescent Med J. 2014;16:e15603.
  • Adimea Real-time monitoring of the dialysis dose for optimising the treatment quality; [cited 2016 Jun 22]. Available from: http://www.bbraun-dialysis.com/cps/rde/xchg/av-dialysis-en-int/hs.xsl/products.html?id=00020743840000000002&prid=PRID00005208
  • Xia Y, Kim E, Whitesides GM. Micromolding of polymers in capillaries : applications in microfabrication. Chemistry of Materials. 1996;8(7):1558–1567.
  • Kooman JP, Joles JA, Gerritsen KG. Creating a wearable artificial kidney: where are we now? Expert Rev Med Devices. 2015;12:373–376.