475
Views
2
CrossRef citations to date
0
Altmetric
Review

The era of biofunctional biomaterials in orthopedics: what does the future hold?

, &
Pages 193-204 | Received 15 Nov 2017, Accepted 17 Jan 2018, Published online: 31 Jan 2018

References

  • Haralson RH, Zuckerman JD. Prevalence, health care expenditures, and orthopedic surgery workforce for musculoskeletal conditions. Jama. 2009;302(14):1586–1587.
  • Narayan R. Handbook of materials for medical devices. Ohio, United States: ASM international. 2003.
  • Navarro M, Michiardi A, Castano O, et al. Biomaterials in orthopaedics. J Royal Soc Interface. 2008;5(27):1137–1158.
  • Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19(16):1419–1423.
  • Seal BL, Panitch A. Encyclopedia of Medical Devices and Instrumentation. 2nd Ed. New Jersey (United States): John Wiley and Sons; 2006. Chapter 1, Biomaterials: an overview; p. 267-283.
  • Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. Jbjs. 1998;80(2):268–282.
  • Amstutz HC, Campbell P, Kossovsky N, et al. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Relat Res. 1992;276:7–18.
  • Katz JL. Anisotropy of Young’s modulus of bone. Nature. 1980;283(5742):106–107.
  • Flanagan D, Ilies H, McCullough P, et al. Measurement of the fatigue life of mini dental implants: a pilot study. J Oral Implantol. 2008;34(1):7–11.
  • Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–1017.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–798.
  • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.
  • Vehof JW, Haus MT, De Ruijter AE, et al. Bone formation in transforming growth factor beta‐1‐loaded titanium fiber mesh implants. Clin Oral Implants Res. 2002;13(1):94–102.
  • Walley KC, Bajraliu M, Gonzalez T, et al. The chronicle of a stainless steel orthopaedic implant. Orthopaedic J at Harv Med Sch. 2016;17:68–74.
  • Gillet P. Mechanics of bones. 2017. p9. Available from: www.montefiore.ulg.ac.be/systems/GBIO/gbio001/chap_2.3.pdf
  • Kerin A, Wisnom M, Adams M. The compressive strength of articular cartilage. Proc Institut Mec Engin H: J Eng Med. 1998;212(4):273–280.
  • Davis JR. Stainless steels. Ohio, United States: ASM international; 1994.
  • Park B, Kim YK. Metallic biomaterials. Balance. 2003;1:50.
  • Patel NR, Gohil PP. A review on biomaterials: scope, applications & human anatomy significance. Int J Emerging Technol Advanced Eng. 2012;2(4):91–101.
  • Park JH, Jana SC. The relationship between nano-and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer. 2003;44(7):2091–2100.
  • Fang L, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials. 2006;27(20):3701–3707.
  • Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng. 2006;32(9):1384–1402.
  • Charnley J. Anchorage of the femoral head prosthesis to the shaft of the femur. Bone Jt J. 1960;42(1):28–30.
  • Marti A. Cobalt-base alloys used in bone surgery. Injury. 2000;31:D18–D21.
  • Pilliar RM. Metallic biomaterials. Biomed Mat. 2009;4:41–81.
  • Mccutchen JW, Collier JP, Mayor MB. Osseointegration of titanium implants in total hip arthroplasty. Clin Orthop Relat Res. 1990;261:114–125.
  • Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621–1639.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge, United Kingdom: Cambridge university press; 1999.
  • Hench LL, Wilson J. An introduction to bioceramics. Vol. 1. New Jersey, United States: World scientific. 1993.
  • Jung YL, Kim S-Y. Alumina-on-polyethylene bearing surfaces in total hip arthroplasty. Open Orthop J. 2010;4:56.
  • Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1–25.
  • Ohgushi H, Okumura M, Yoshikawa T, et al. Bone formation processin porous calcium carbonate and hydroxyapatite. J Biomed Mater Res. 1992;26(7):885–895.
  • Peitl O, Zanotto ED, Hench LL. Highly bioactive P 2 O 5–na 2 O–caO–siO 2 glass-ceramics. J Non Cryst Solids. 2001;292(1):115–126.
  • Moscatelli M, Faré S, Delvecchio E, et al. Structural, mechanical and wear resistance assessment of UHMWPE orthopedic components. J App Biomat Biomech: JABB. 2006;4(3):165–171.
  • Robinson R, Wright T, Burstein A. Mechanical properties of poly (methyl methacrylate) bone cements. J Biomed Mater Res. 1981;15(2):203–208.
  • Nalbandian RM, Swanson AB, Maupin BK. Long-term silicone implant arthroplasty: implications of animal and human autopsy findings. Jama. 1983;250(9):1195–1198.
  • Shalaby SW, Deng M. Self-reinforced ultra-high molecular weight polyethylene composites. U.S. Patent No. 5,824,411, Washington DC, United States: U.S. Patent and Trademark Office; 1998.
  • Cho D-Y, Liau W-R, Lee W-Y, et al. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51(6):1343–1350.
  • Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–4869.
  • Cook SD, Thomas KA, Delton JE, et al. Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength. J Biomed Mater Res. 1992;26(8):989–1001.
  • Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27(13):2651–2670.
  • Kokubo T, Miyaji F, Kim HM, et al. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceramic Soc. 1996;79(4):1127–1129.
  • Teixeira RLP, Godoy G, Pereira M. Calcium phosphate formation on alkali-treated titanium alloy and stainless steel. Mater Res. 2004;7(2):299–303.
  • Elmengaard B, Bechtold JE, Søballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 2005;26(17):3521–3526.
  • Lyndon JA, Boyd BJ, Birbilis N. Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Rel. 2014;179:63–75.
  • Tognarini I, Sorace S, Zonefrati R, et al. In vitro differentiation of human mesenchymal stem cells on Ti6Al4V surfaces. Biomaterials. 2008;29(7):809–824.
  • Mochizuki A, Kaneda H. Study on the blood compatibility and biodegradation properties of magnesium alloys. Mater Sci Engineering: C. 2015;47:204–210.
  • Berglund IS, Jacobs BY, Allen KD, et al. Peri-implant tissue response and biodegradation performance of a Mg–1.0 Ca–0.5 Sr alloy in rat tibia. Mater Sci Engineering: C. 2016;62:79–85.
  • Kokubo T, Kim H-M, Kawashita M, et al. review bioactive metals: preparation and properties. J Mat Sci: Mat Med. 2004;15(2):99–107.
  • Marrow B, Matrix DB, Tcp TP, et al. Bone and materials in fracture fixation. Elements of Fracture Fixation-E-book. 2015:24.
  • Voutilainen N. Self-reinforced polylactic acid implant fixation for arthrodeses in rheumatoid arthritis and ankle fractures-a short-and long-term study [dissertation]. Helsinki, Finland: University of Helsinki; 2002.
  • Gloria A, De Santis R, Ambrosio L, et al. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEXTM device for customized intervertebral disc prosthesis. J Biomater Appl. 2011;25(8):795–810.
  • Levett PA, Melchels FP, Schrobback K, et al. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater. 2014;10(1):214–223.
  • Wang L-S, Du C, Toh WS, et al. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials. 2014;35(7):2207–2217.
  • Sivashanmugam A, Kumar RA, Priya MV, et al. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J. 2015;72:543–565.
  • Cai Y, López-Ruiz E, Wengel J, et al. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. J Control Rel. 2017;253:153–159.
  • Gilmore J, Burg T, Groff RE, et al. Design and optimization of a novel bio‐loom to weave melt‐spun absorbable polymers for bone tissue engineering. J Biomed Mater Res B: Appl Biomater. 2016;105(6):1342-1351.
  • Lendlein A, Behl M, Hiebl B, et al. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices. 2010;7(3):357–379.
  • Jung YC, Cho JW. Application of shape memory polyurethane in orthodontic. J Mater Science: Mater Med. 2010;21(10):2881–2886.
  • Shoham M. Spinal fusion using rods of shape memory material. U.S. Patent No. 9,655,649, Washington DC, United States: U.S. Patent and Trademark Office; 2017.
  • Baker RM, Tseng L-F, Iannolo MT, et al. Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse femoral segmental defect study. Biomaterials. 2016;76:388–398.
  • Schamel M, Bernhardt A, Quade M, et al. Cu 2+, Co 2+ and Cr 3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells. Mater Sci Engineering: C. 2017;73:99–110.
  • Zhang J, Ma X, Lin D, et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251–264.
  • Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dental Mater. 2012;28(2):113–122.
  • Wang P, Zhao L, Chen W, et al. Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res. 2014;93(7):618–625.
  • Jain A, Kumar S, Aggarwal AN, et al. Augmentation of bone healing in delayed and atrophic nonunion of fractures of long bones by partially decalcified bone allograft (decal bone). Indian J Orthop. 2015;49(6):637.
  • Dai L, He Z, Zhang X, et al. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture. Am J Sports Med. 2014;42(3):583–591.
  • Chen W, Thein-Han W, Weir MD, et al. Prevascularization of biofunctional calcium phosphate cement for dental and craniofacial repairs. Dental Mater. 2014;30(5):535–544.
  • Fujishiro Y, Oonishi H, Hench L. Quantitative comparison of in vivo bone generation with particulate bioglass and hydroxyapatite as a bone graft substitute. Bioceramics. 1997;10:283–286.
  • Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12(2):155–163.
  • Xynos I, Hukkanen M, Batten J, et al. Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67(4):321–329.
  • Hench LL. Handbook of Bioceramics and Biocomposites. Cham (Switzerland): Springer; Chapter 2, Bioactive glass bone grafts: history and clinical applications; 2016. p. 23–33.
  • Cogswell FN. Thermoplastic aromatic polymer composites: a study of the structure, processing and properties of carbon fibre reinforced polyetheretherketone and related materials. Amsterdam, Netherlands: Elsevier; 2013.
  • Miyazaki T, Kawashita M, Handbook of Bioceramics and Biocomposites. Cham (Switzerland): Springer; Chapter 1, Ceramic-Polymer Composites for Biomedical Applications; 2016. p. 287–300.
  • Popa A, Stan G, Enculescu M, et al. Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering. J Mech Behav Biomed Mater. 2015;51:313–327.
  • Bartolomé J, Moya JS, Couceiro R, et al. In vitro and in vivo evaluation of a new zirconia/niobium biocermet for hard tissue replacement. Biomaterials. 2016;76:313–320.
  • Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014;15(4):5426–5445.
  • Kizuki T, Matsushita T, Apatite-Forming KT. PEEK with TiO2 surface layer coating. J Mater Science: Mater Med. 2015;26(1):1.
  • Kim IY, Sugino A, Kikuta K, et al. Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl. 2009;24(2):105–118.
  • Shinzato S, Kobayashi M, Mousa WF, et al. Bioactive polymethyl methacrylate‐based bone cement: comparison of glass beads, apatite‐and wollastonite‐containing glass–ceramic, and hydroxyapatite fillers on mechanical and biological properties. J Biomed Mater Res. 2000;51(2):258–272.
  • Arabmotlagh M, Bachmaier S, Geiger F, et al. PMMA‐hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model. J Biomed Mater Res B: Appl Biomater. 2014;102(8):1613–1619.
  • Gbureck U, Vorndran E, Müller FA, et al. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Cont Rel. 2007;122(2):173–180.
  • Esteban-Tejeda L, Smirnov A, Prado C, et al. Multifunctional ceramic-metal biocomposites with zinc containing antimicrobial glass coatings. Ceramics Interl. 2016;42(6):7023–7029.
  • Elbadawi M, Meredith J, Hopkins L, et al. Progress in bioactive metal and, ceramic implants for load-bearing application. Advanced Techniques in Bone Regeneration. Rijeka, Croatia: InTech. 2016.
  • Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21(17):1803–1810.
  • Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–483.
  • Webster TJ, Ergun C, Doremus RH, et al. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22(11):1327–1333.
  • Bhardwaj G, Yazici H, Webster TJ. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents. Nanoscale. 2015;7(18):8416–8427.
  • Rodrigues BV, Leite NC, das Neves Cavalcanti B, et al. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. Inter J Nanomed. 2016;11:2569.
  • Webster TJ, Schadler LS, Siegel RW, et al. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng. 2001;7(3):291–301.
  • Umair M, Javed I, Rehman M, et al. Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci. 2016;19(2):161–180.
  • Liu Y, Zheng Z, Zara JN, et al. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials. 2012;33(34):8745–8756.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.
  • Roe D, Karandikar B, Bonn-Savage N, et al. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicro Chem. 2008;61(4):869–876.
  • Gosheger G, Hardes J, Ahrens H, et al. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomat. 2004;25(24):5547–5556.
  • Wassall M, Santin M, Isalberti C, et al. Adhesion of bacteria to stainless steel and silver‐coated orthopedic external fixation pins. J Biomed Mater Res. 1997;36(3):325–330.
  • Coester LM, Nepola JV, Allen J, et al. The effects of silver coated external fixation pins. Iowa Orthop J. 2006;26:48.
  • Jennison T, McNally M, Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater. 2014;10(2):595–603.
  • Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849–13880.
  • Miller DC, Thapa A, Haberstroh KM, et al. Endothelial and vascular smooth muscle cell function on poly (lactic-co-glycolic acid) with nano-structured surface features. Biomaterials. 2004;25(1):53–61.
  • Balasundaram G, Storey DM, Webster TJ. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density. Int J Nanomedicine. 2015;10:527.
  • Khang D, Lu J, Yao C, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29(8):970–983.
  • Lu J, Webster TJ. Reduced immune cell responses on nano and submicron rough titanium. Acta Biomater. 2015;16:223–231.
  • Kim J, Kim HN, Lim K-T, et al. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials. 2013;34(30):7257–7268.
  • Kim J, Bae W-G, Lim K-T, et al. Density of nanopatterned surfaces for designing bone tissue engineering scaffolds. Mater Lett. 2014;130:227–231.
  • Variola F, Zalzal SF, Leduc A, et al. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties. Int J Nanomedicine. 2014;9:2319.
  • Atefyekta S, Ercan B, Karlsson J, et al. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomedicine. 2016;11:977.
  • Stolzoff M, Burns JE, Aslani A, et al. Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation. Int J Nanomedicine. 2017;12:1161.
  • Bhardwaj G, Webster TJ. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. Int J Nanomedicine. 2017;12:363.
  • Thewes N, Loskill P, Jung P, et al. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study. Beilstein J Nanotechnol. 2014;5:1501.
  • Mao Y, Subramaniam PK, Tawfiq K, et al. Microbial biofouling: a mechanistic investigation. J Adhes Sci Technol. 2011;25(17):2155–2168.
  • Getzlaf MA, Lewallen EA, Kremers HM, et al. Multi‐disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthopaedic Res. 2016;34(2):177–186.
  • Khang D, Kim SY, Liu-Snyder P, et al. Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007;28(32):4756–4768.
  • Yu L, Kim BJ, Meng E. Chronically implanted pressure sensors: challenges and state of the field. Sensors. 2014;14(11):20620–20644.
  • Mishra V, Singh N, Tiwari U, et al. Fiber grating sensors in medicine: current and emerging applications. Sen Actuat A: Phy. 2011;167(2):279–290.
  • Varga M, Wolter K-J, editors. Sensors and imaging methods for detecting loosening of orthopedic implants—a review. Design and Technology in Electronic Packaging (SIITME), 2014 IEEE 20th International Symposium for; 2014: IEEE.
  • Sirivisoot S, Yao C, Xiao X, et al., editors. Carbon nanotubes-titanium electrode for detecting calcium deposition by osteoblasts. Bioengineering Conference, 2007. NEBC’07. IEEE 33rd Annual Northeast; 2007: IEEE.
  • Sirivisoot S, Webster TJ. In situ bone growth detection using carbon nanotubes–titanium sensors. Bionano Sci. 2013;3(2):184–191.
  • Sirivisoot S, Pareta RA, Webster TJ. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J Biomed Mater Res. 2011;99(4):586–597.
  • Ventola CL. Medical applications for 3D printing: current and projected uses. Pharm Ther. 2014;39(10):704.
  • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.
  • Lipson H. New world of 3-D printing offers” completely new ways of thinking”: Q&A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse. 2012;4(6):12–14.
  • Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–26.
  • Anderson PA. Clinical applications of 3D printing. Spine. 2017;42:S30–S31.
  • Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine. 2016;41(1):E50–E54.
  • Ma L, Zhou Y, Zhu Y, et al. 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Sci Rep. 2017;7(1):7626.
  • Liang H, Ji T, Zhang Y, et al. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017;99(2):267–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.