234
Views
1
CrossRef citations to date
0
Altmetric
Review

The tear turnover and tear clearance tests – a review

, , & ORCID Icon
Pages 219-229 | Received 10 Oct 2017, Accepted 29 Jan 2018, Published online: 07 Feb 2018

References

  • Tomlinson A, Khanal S. Assessment of tear film dynamics: quantification approach. Ocular Surf. 2005;3:81–95.
  • Stern ME, Gao J, Siemasko KF, et al. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res. 2004;78:409–416.
  • De Paiva CS, Pflugfelder SC. Tear clearance implications for ocular surface health. Exp Eye Res. 2004;78:395–397.
  • Doane MG. Blinking and the mechanics of the lacrimal drainage system. Ophthalmology. 1981;88:844–851.
  • Rossomondo RM, Carlton WH, Trueblood JH, et al. A new method of evaluating lacrimal drainage. Arch Ophthalmol. 1972;88:523–525.
  • Maurice DM. The dynamics and drainage of tears. Int Ophthalmol Clin. 1973;13(1):103–118.
  • Rosengren B. On lacrimal drainage. Ophthalmologica. 1972;164:409–421.
  • Sahlin S, Laurell C-G, Chen E, et al. Lacrimal drainage capacity, age and blink rate. Orbit. 1998;17:155–159.
  • Yamaguchi M, Ohta K, Shiraishi A, et al. New method for viewing Krehbiel flow by polymethylmethacrylate particles suspended in fluorescein solution. Acta Ophthalmol. 2014;92:e676–80.
  • Qian L, Wang Y, Xie J, et al. Biochemical changes contributing to functional quiescence in lacrimal gland acinar cells after chronic ex vivo exposure to a muscarinic agonist. Scand J Immunol. 2003;58:550–565.
  • Toda I, Asano-Kato N, Komai-Hori Y, et al. Dry eye after laser in situ keratomileusis. Am J Ophthalmol. 2001;132:1–7.
  • Nelson JD. Simultaneous evaluation of tear turnover and corneal epithelial permeability by fluorophotometry in normal subjects and patients with keratoconjunctivitis sicca (KCS). Trans Am Ophthalmol Soc. 1995;93:709–753.
  • Pflugfelder SC, Tseng SC, Sanabria O, et al. Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea. 1998;17:38–56.
  • Prabhasawat P, Tseng SC. Frequent association of delayed tear clearance in ocular irritation. Br J Ophthalmol. 1998;82:666–675.
  • Afonso AA, Monroy D, Stern ME, et al. Correlation of tear fluorescein clearance and Schirmer test scores with ocular irritation symptoms. Ophthalmology. 1999;106:803–810.
  • Macri A, Pflugfelder S. Correlation of the Schirmer 1 and fluorescein clearance tests with the severity of corneal epithelial and eyelid disease. Arch Ophthalmol. 2000;118:1632–1638.
  • Sorbara L, Simpson T, Vaccari S, et al. Tear turnover rate is reduced in patients with symptomatic dry eye. Cont Lens and Anterior Eye. 2004;27:15–20.
  • Göbbels M, Goebels G, Breitbach R, et al. Tear secretion in dry eyes as assessed by objective fluorophotometry. Ger J Ophthalmol. 1991;1:350–353.
  • Mathers WD, Lane JA, Sutphin JE, et al. Model for ocular tear film function. Cornea. 1996;15:110–119.
  • Khanal S, Tomlinson A, Diaper CJ. Tear physiology of aqueous deficiency and evaporative dry eye. Optom Vis Sci. 2009;86:1235–1240.
  • Tsubota K, Kaido M, Yagi Y, et al. Diseases associated with ocular surface abnormalities: the importance of reflex tearing. Brit J Ophthalmol. 1999;83:89–91.
  • Pflugfelder SC, Solomon A, Dursun D, et al. Dry eye and delayed tear clearance: “a call to arms”. Lacrimal gland, tear film, and dry eye syndromes 3. Bostion, MA: Springer; 2002. p. 739–743.
  • Afonso AA, Sobrin L, Monroy DC, et al. Tear fluid gelatinase B activity correlates with IL-1α concentration and fluorescein clearance in ocular rosacea. Invest Ophthalmol Vis Sci. 1999;40:2506–2512.
  • Macri A, Rolando M, Pflugfelder S. A standardized visual scale for evaluation of tear fluorescein clearance. Ophthalmology. 2000;107:1338–1343.
  • Dursun D, Wang M, Monroy D, et al. A mouse model of keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 2002;43:632–638.
  • Jordan A, Baum J. Basic tear flow: does it exist? Ophthalmology. 1980;87:920–930.
  • Nava A, Barton K, Monroy DC, et al. The effects of age, gender, and fluid dynamics on the concentration of tear film epidermal growth factor. Cornea. 1997;16:430–438.
  • Furukawa RE, Polse KA. Changes in tear flow accompanying aging. OptomVis Sci. 1978;55:69–74.
  • Sahlin S, Chen E. Evaluation of the lacrimal drainage function by the drop test. Am J Ophthalmol. 1996;122:701–708.
  • Van Best JA, del Castillo Benitez JM, Coulangeon L-M. Measurement of basal tear turnover using a standardized protocol. Graefes Arch Clin Exp Ophthalmol. 1995;233:1–7.
  • Occhipinti JR, Mosier MA, Lamotte J, et al. Fluorophotometric measurement of human tear turnover rate. Curr Eye Res. 1988;7:995–1000.
  • Barton K, Monroy DC, Nava A, et al. Inflammatory cytokines in the tears of patients with ocular rosacea. Ophthalmology. 1997;104:1868–1874.
  • Chang S-W, Chang C-J. Delayed tear clearance in contact lens associated papillary conjunctivitis. Curr Eye Res. 2001;22:253–257.
  • Lindén C, Alm A. The effect of reduced tear drainage on corneal and aqueous concentrations of topically applied fluorescein. Acta Ophthalmol. 1990;68:633–638.
  • Kuppens EV, Van Best JA, Sterk CC, et al. Decreased basal tear turnover in patients with untreated primary open-angle glaucoma. Am J Ophthalmol. 1995;120:41–46.
  • Kuppens E, Stolwijk T, de Keizer R, et al. Basal tear turnover and topical timolol in glaucoma patients and healthy controls by fluorophotometry. Invest Ophthalmol Vis Sci. 1992;33:3442–3448.
  • Nover A, Jaeger W. Kolorimetrische methode zur messung der tränensekretion. Klin Monatsbl Augenheilkd. 1952;121:419–425.
  • Webber W, Jones D. Continuous fluorophotometric method of measuring tear turnover rate in humans and analysis of factors affecting accuracy. Med Biol Eng Comput. 1986;24:386–392.
  • Xu K-P, Tsubota K. Correlation of tear clearance rate and fluorophotometric assessment of tear turnover. Brit J Ophthal. 1995;79:1042–1045.
  • Webber W, Jones D, Wright P. Fluorophotometric measurements of tear turnover rate in normal healthy persons: evidence for a circadian rhythm. Eye. 1987;1:615–620.
  • Best J, Oosterhuis J. Computer fluorophotometry. Doc Ophthalmol. 1983;56:89–97.
  • Pearce EI, Keenan BP, McRory C. An improved fluorophotometric method for tear turnover assessment. Optom Vis Sci. 2001;78:30–36.
  • Benedetto DA, Clinch TE, Laibson PR. In vivo observation of tear dynamics using fluorophotometry. Arch Ophthalmol. 1984;102:410–412.
  • Maurice D. A new objective fluorophotometer. Exp Eye Res. 1963;2:33–38.
  • Puffer MJ, Neault RW, Brubaker RF. Basal precorneal tear turnover in the human eye. Amer J Ophthalmol. 1980;89:369–376.
  • Fahim MM, Haji S, Koonapareddy CV, et al. Fluorophotometry as a diagnostic tool for the evaluation of dry eye disease. BMC Ophthalmol. 2006;6:20.
  • Hurwitz J, Maisey M, Welham R. Quantitative lacrimal scintillography. I. Method and physiological application. Brit J Ophthalmol. 1975;59:308–312.
  • Chavis RM, Welham RA, Maisey MN. Quantitative lacrimal scintillography. Arch Ophthalmol. 1978;96:2066–2068.
  • Hilditch T, Kwok C, Amanat L. Lacrimal scintigraphy. I. Compartmental analysis of data. Brit J Ophthalmol. 1983;67:713–719.
  • Maurice D, Srinivas S. Use of fluorometry in assessing the efficacy of a cation‐sensitive gel as an ophthalmic vehicle: comparison with scintigraphy. J Pharm Sci. 1992;81:615–619.
  • White WL, Glover AT, Buckner AB. Effect of blinking on tear elimination as evaluated by dacryoscintigraphy. Ophthalmology. 1991;98:367–369.
  • Mishima S, Gasset A, Klyce S, et al. Determination of tear volume and tear flow. Invest Ophthalmol Vis Sci. 1966;5:264–276.
  • Mishima S. Some physiological aspects of the precorneal tear film. Arch Ophthalmol. 1965;73:233–241.
  • Patton TF, Robinson JR. Influence of topical anesthesia on tear dynamics and ocular drug bioavailability in albino rabbits. J Pharm Sci. 1975;64:267–271.
  • Scherz W, Doane MG, Dohlman CH. Tear volume in normal eyes and keratoconjunctivitis sicca. Graef Arch Clin Exp. 1974;192:141–150.
  • Braun RJ, King-Smith PE, Begley CG, et al. Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res. 2015;45:132–164.
  • Markoulli M, Papas E, Petznick A, et al. Validation of the flush method as an alternative to basal or reflex tear collection. Curr Eye Res. 2011;36:198–207.
  • Stuchell RN, Farris RL, Mandel ID. Basal and reflex human tear analysis: II. Chemical analysis: lactoferrin and lysozyme. Ophthalmology. 1981;88:858–862.
  • Tomlinson A, Doane MG, Mcfadyen A. Inputs and outputs of the lacrimal system: review of production and evaporative loss. Ocul Surf. 2009;7:186–198.
  • Cruz AA, Garcia DM, Pinto CT, et al. Spontaneous eyeblink activity. The Ocular Surface. 2011;9:29–41.
  • Tomlinson A, Blades KJ, Pearce EI. What does the phenol red thread test actually measure? Optom Vis Sci. 2001;78:142–146.
  • Tomlinson A, Pearce EI, Simmons PA, et al. Effect of oral contraceptives on tear physiology. Ophthalmin Physiol Opt. 2001;21:9–16.
  • Keijser S, van Best JA, Van der Lelij A, et al. Reflex and steady state tears in patients with latent stromal herpetic keratitis. Invest Ophthalmol Vis Sci. 2002;43:87–91.
  • McCulley JP, Shine WE, Aronowicz J, et al. Presumed hyposecretory/hyperevaporative KCS: tear characteristics. Trans Am Ophthalmol Soc. 2003;101:141–152.
  • McCann LC, Tomlinson A, Pearce EI, et al. Tear and meibomian gland function in blepharitis and normals. Eye Contact Lens. 2009;35:203–208.
  • Khanal S, Tomlinson A. Tear physiology in dry eye associated with chronic GVHD. Bone Marrow Transpl. 2012;47:115–119.
  • Webber W, Jones D, Wright P. Measurements of tear turnover in normal healthy-persons by fluorophotometry suggest a circadian-rhythm. IRCS Med Sci-Biochem. 1984;12:683–684.
  • García N, Tesón M, Enríquez-de-Salamanca A, et al. Basal values, intra-day and inter-day variations in tear film osmolarity and tear fluorescein clearance. Curr Eye Res. 2014;39:673–679.
  • Mochizuki H, Yamada M, Hatou S, et al. Turnover rate of tear-film lipid layer determined by fluorophotometry. Brit J Ophthalmol. 2009;93:1535–1538.
  • Mochizuki H, Yamada M, Hato S, et al. Fluorophotometric measurement of the precorneal residence time of topically applied hyaluronic acid. Brit J Ophthalmol. 2008;92:108–111.
  • Khanal S, Millar TJ. Nanoscale phase dynamics of the normal tear film. Nanomedicine. 2010;6:707–713.
  • Jones LT. The lacrimal secretory system and its treatment. Am J Ophthalmol. 1966;62:47–60.
  • Joshi A, Maurice D, Paugh JR. A new method for determining corneal epithelial barrier to fluorescein in humans. Investigative Ophthalmol Vis Sci. 1996;37:1008–1016.
  • Göbbels M, Spitznas M. Corneal epithelial permeability of dry eyes before and after treatment with artificial tears. Ophthalmology. 1992;99:873–878.
  • Göbbels M, Spitznas M. Effects of artificial tears on corneal epithelial permeability in dry eyes. Graefes Arch Clin Exp Ophthalmol. 1991;229:345–349.
  • Göbbels M, Spitznas M. Influence of artificial tears on corneal epithelium in dry-eye syndrome. Graefes Arch Clin Exp Ophthalmol. 1989;227:139–141.
  • Göbbels M, Spitznas M, Oldendoerp J. Impairment of corneal epithelial barrier function in diabetics. Graefes Arch Clin Exp Ophthalmol. 1989;227:142–144.
  • Chang S-W, Hu F-R. Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea. 1993;12:493–499.
  • Nichols JJ, King-Smith PE, Hinel EA, et al. The use of fluorescent quenching in studying the contribution of evaporation to tear thinning evaporation contribution to tear thinning. Invest Ophthalmol Vis Sci. 2012;53:5426–5432.
  • Braun RJ, Gewecke NR, Begley CG, et al. A model for tear film thinning with osmolarity and fluorescein mathematical model for tear film thinning. Invest Ophthalmol Vis Sci. 2014;55:1133–1142.
  • Kok J, Boets E, Van Best J, et al. Fluorophotometric assessment of tear turnover under rigid contact lenses. Cornea. 1992;11:515–517.
  • Stolwijk TR, Van Best J, Lemkes H, et al. Determination of basal tear turnover in insulin-dependent diabetes mellitus patients by fluorophotometry. Int Ophthalmol. 1991;15:377–382.
  • Doane MG. Interaction of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am J Ophthalmol. 1980;89:507–516.
  • Craig JP, Tomlinson A. Age and gender effects on the normal tear film. Lacrimal gland, tear film, and dry eye syndromes 2. Boston, MA: Springer; 1998. p. 411–415.
  • Senchyna M, Wax MB. Quantitative assessment of tear production: a review of methods and utility in dry eye drug discovery. J Ocul Biol Dis Infor. 2008;1:1–6.
  • Xu K-P, Yagi Y, Toda I, et al. Tear function index: a new measure of dry eye. Arch Ophthalmol. 1995;113:84–88.
  • Jones L, Leech R, Rahman S, et al. A novel method to determine tear prism height.: poster# 95. Optom Vis Sci. 2002;79:252.
  • Zappia RJ, Milder B. Lacrimal drainage function: 1. The Jones Fluorescein Test. Am J Ophthalmol. 1972;74:154–159.
  • Tucker NA, Codère F. The effect of fluorescein volume on lacrimal outflow transit time. Ophthal Plast Reconstr Surg. 1994;10:256–259.
  • Zappia RJ, Milder B. Lacrimal drainage function: 2. The Fluorescein Dye Disappearance Test. Am J Ophthalmol. 1972;74:160–162.
  • Norn M. Tear secretion in normal eyes. Acta Ophthalmol. 1965;43:567–573.
  • Zheng X, Kamao T, Yamaguchi M, et al. New method for evaluation of early phase tear clearance by anterior segment optical coherence tomography. Acta Ophthalmol. 2014;92:e105–11.
  • Garaszczuk IK, Mousavi M, Exposito AC, et al. Evaluating tear clearance rate with optical coherence tomography. Cont Lens Anterior Eye. 2018;41:54–59.
  • Zheng X, Yamaguchi M, Kamao T, et al. Visualization of tear clearance using anterior segment optical coherence tomography and polymethylmethacrylate particles. Cornea. 2016;35:S78–82.
  • Garaszczuk IK, Iskander DR. Qualitative assessment of tear dynamics with fluorescein profilometry. Cont Lens Anterior Eye. 2017;40:208–212.
  • Wang J, Simmons P, Aquavella J, et al. Dynamic distribution of artificial tears on the ocular surface. Arch Ophthalmol. 2008;126:619–625.
  • Wang J, Aquavella J, Palakuru J, et al. Repeated measurements of dynamic tear distribution on the ocular surface after instillation of artificial tears. Invest Ophthalmol Vis Sci. 2006;47:3325–3329.
  • Garcia‐Lázaro S, Belda‐Salmerón L, Ferrer‐Blasco T, et al. Comparison of two artificial tear formulations for dry eye through high‐resolution optical coherence tomography. Clin Exp Optom. 2011;94:549–556.
  • Garcia-Lázaro S, Madrid-Costa D, Ferrer-Blasco T, et al. OCT for assessing artificial tears effectiveness in contact lens wearers. Optom Vis Sci. 2012;89:E62–9.
  • Palakuru JR, Wang J, Aquavella JV. Effect of blinking on tear dynamics. Investigative Ophthalmol Vis Sci. 2007;48:3032–3037.
  • Yuan Y, Wang J, Chen Q, et al. Reduced tear meniscus dynamics in dry eye patients with aqueous tear deficiency. Am J Ophthalmol. 2010;149:932–938.
  • Shen M, Li J, Wang J, et al. Upper and lower tear menisci in the diagnosis of dry eye. Invest Ophthalmol Vis Sci. 2009;50:2722–2726.
  • Mainstone JC, Bruce AS, Golding TR. Tear meniscus measurement in the diagnosis of dry eye. Curr Eye Res. 1996;15:653–661.
  • Bartuzel MM, Szczesna-Iskander DH, Iskander DR. Automatic dynamic tear meniscus measurement in optical coherence tomography. Biomed Opt Express. 2014;5:2759–2768.
  • Napoli PE, Coronella F, Satta GM, et al. A novel technique of contrast-enhanced optical coherence tomography imaging in evaluation of clearance of lipids in human tears. PLoS One. 2014;9:e109843.
  • Willcox MD, Argüeso P, Georgiev GA, et al. TFOS DEWS II tear film report. Ocul Surf. 2017;15:366–403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.