687
Views
0
CrossRef citations to date
0
Altmetric
Review

Production of acoustic radiation force using ultrasound: methods and applications

ORCID Icon
Pages 819-834 | Received 07 Aug 2018, Accepted 17 Oct 2018, Published online: 31 Oct 2018

References

  • Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol. 2010;36(9):1379–1394.
  • Sarvazyan A. Diversity of biomedical applications of acoustic radiation force. Ultrasonics. 2010;50(2):230–234.
  • Kuznetsova LA, Coakley WT. Applications of ultrasound streaming and radiation force in biosensors. Biosens Bioelectron. 2007;22(8):1567–1577.
  • Wang L. Acoustic radiation force based ultrasound elasticity imaging for biomedical applications. Sensors. 2018;18(7):E2252.
  • Doherty JR, Trahey GE, Nightingale KR, et al. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrasonics Ferroelectr Freq Control. 2013;60(4):685–701.
  • Westervelt PJ. The theory of steady forces caused by sound waves. J Acoust Soc Am. 1951;23(4):312–315.
  • Westervelt PJ. Acoustic radiation pressure. J Acoust Soc Am. 1957;29(1):26–29.
  • Beyer RT. Radiation pressure–the history of a mislabeled tensor. J Acoust Soc Am. 1978;63(4):1025–1030.
  • Torr GR. The acoustic radiation force. Am J Phys. 1984;52(5):402–408.
  • Chu B-T, Apfel RE. Acoustic radiation pressure produced by a beam of sound. J Acoust Soc Am. 1982;72(6):1673–1687.
  • Fatemi M, Greenleaf JF. Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc Natl Acad Sci USA. 1999;96(12):6603–6608.
  • Nightingale KR, Palmeri ML, Nightingale RW, et al. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am. 2001;110(1):625–634.
  • Sarvazyan A, Hall TJ, Urban MW, et al. Elasticity imaging - an emerging branch of medical imaging. An overview. Curr Med Imaging Rev. 2011;7(4):255–282.
  • Sugimoto T, Ueha S, Itoh K, editors. Tissue hardness measurement using the radiation force of focused ultrasound. IEEE Int Ultrason Symp, Honolulu, HI, USA. 1990. pp. 1377-1380.
  • Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–1435.
  • Dutt V, Kinnick RR, Muthupillai R, et al. Acoustic shear-wave imaging using echo ultrasound compared to magnetic resonance elastography. Ultrasound Med Biol. 2000;26(3):397–403.
  • Starritt HC, Duck FA, Humphrey VF. Forces acting in the direction of propagation in pulsed ultrasound fields. Phys Med Biol. 1991;36(11):1465.
  • Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am. 1996;99(5):2791–2798.
  • Hamilton MF, Blackstock DT. Nonlinear Acoustics. San Diego: Academic Press; 1998.
  • Nightingale KR, Nightingale RW, Palmeri ML, et al. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement. Ultrason Imaging. 2000;22(1):35–54.
  • Nightingale KR, Trahey GE. A finite element model for simulating acoustic streaming in cystic breast lesions with experimental validation. Ultrasonics, Ferroelectrics, Frequency Control, IEEE Transactions. 2000;47(1):201–214.
  • Nightingale KR, Kornguth PJ, Walker WF, et al. A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast. Ultrasound Med Biol. 1995;21(6):745–751.
  • Fatemi M, Greenleaf JF. Ultrasound-stimulated vibro-acoustic spectrography. Science. 1998;280(5360):82–85.
  • Fatemi M, Greenleaf JF. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys Med Biol. 2000;45(6):1449–1464.
  • Bouchard RR, Palmeri ML, Pinton GF, et al. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom. J Acoust Soc Am. 2009;126(5):2733–2745.
  • Czernuszewicz TJ, Streeter JE, Dayton PA, et al. Experimental validation of displacement underestimation in ARFI ultrasound. Ultrason Imaging. 2013;35(3):196–213.
  • Nightingale K, McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol. 2003;29(12):1715–1723.
  • Nightingale K, Bentley R, Trahey G. Observations of tissue response to acoustic radiation force: opportunities for imaging. Ultrason Imaging. 2002;24(3):129–138.
  • Palmeri ML, Sharma AC, Bouchard RR, et al. A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(10):1699–1712.
  • Walker WF, Fernandez FJ, Negron LA. A method of imaging viscoelastic parameters with acoustic radiation force. Phys Med Biol. 2000;45(6):1437–1447.
  • Viola F, Walker WF. Radiation force imaging of viscoelastic properties with reduced artifacts. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(6):736–742.
  • Viola F, Kramer MD, Lawrence MB, et al. Sonorheometry: A noncontact method for the dynamic assessment of thrombosis. Ann Biomed Eng. 2004;32(5):696–705.
  • Viola F, Mauldin FW, Lin-Schmidt X, et al. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clin Chim Acta. 2010;411(1–2):106–113.
  • Mauldin FW, Viola F, Hamer TC, et al. Adaptive force sonorheometry for assessment of whole blood coagulation. Clin Chim Acta. 2010;411(9–10):638–644.
  • Corey FS, Walker WF. Sonic estimation of elasticity via resonance: a new method of assessing hemostasis. Ann Biomed Eng. 2016;44(5):1405–1424.
  • Mauldin FW, Haider MA, Loboa EG, et al. Monitored steady-state excitation and recovery (MSSER) radiation force imaging using viscoelastic models. IEEE Trans Ultras*On Ferroelectr Freq Control. 2008;55(7):1597–1610.
  • Selzo MR, Gallippi CM. Viscoelastic response (VisR) imaging for assessment of viscoelasticity in voigt materials. Ultrasonics, Ferroelectrics, Frequency Control, IEEE Transactions. 2013;60(12):2488–2500.
  • Amador C, Urban MW, Chen S, et al. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion. Phys Med Biol. 2012;57(5):1263–1282.
  • Amador Carrascal C, Chen S, Urban MW, et al. Acoustic radiation force-induced creep recovery (ARFICR): a noninvasive method to characterize tissue viscoelasticity. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(1):3–13.
  • Konofagou EE, Hynynen K. Localized harmonic motion imaging: theory, simulations and experiments. Ultrasound Med Biol. 2003;29(10):1405–1413.
  • Shan B, Pelegri AA, Maleke C, et al. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging. J Biomech. 2008;41(10):2150–2158.
  • Sapin-de Brosses E, Gennisson JL, Pernot M, et al. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Phys Med Biol. 2010;55(6):1701–1718.
  • Yang H, Yi H G, Shutao W, et al. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI). Phys Med Biol. 2015;60(15):5911.
  • Yang H, Shutao W, Thomas P, et al. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo. Phys Med Biol. 2017;62(8):3111.
  • Chen S, Urban MW, Pislaru C, et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):55–62.
  • Chen S, Fatemi M, Greenleaf JF. Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am. 2004;115(6):2781–2785.
  • Deffieux T, Montaldo G, Tanter M, et al. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Med Imaging. 2009;28(3):313–322.
  • Zheng Y, Yao A, Chen S, et al. Ultrasound vibrometry using orthogonal frequency based vibration pulses. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(11):2359–2370.
  • Palmeri ML, Wang MH, Dahl JJ, et al. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–558.
  • Wang MH, Palmeri ML, Rotemberg VM, et al. Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo. Ultrasound Med Biol. 2010;36(5):802–813.
  • Rouze NC, Wang MH, Palmeri ML, et al. Robust estimation of time-of-flight shear wave speed using a radon sum transformation. IEEE Trans Ultrasonics Ferroelectr Freq Control. 2010;57(12):2662–2670.
  • Rouze NC, Wang MH, Palmeri ML, et al. Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images. IEEE Trans Ultrasonics Ferroelectr Freq Control. 2012;59(8):1729–1740.
  • Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.
  • Song P, Zhao H, Urban MW, et al. Improved shear wave motion detection using pulse-inversion harmonic imaging with a phased array transducer. IEEE T Med Imaging. 2013;32(12):2299–2310.
  • Song P, Manduca A, Zhao H, et al. Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering. Ultrasound Med Biol. 2014;40(6):1343–1355.
  • Amador C, Chen S, Manduca A, et al. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(4):660–668.
  • Bernal M, Nenadic I, Urban MW, et al. Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes. J Acoust Soc Am. 2011;129(3):1344–1354.
  • Couade M, Pernot M, Prada C, et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med Biol. 2010;36(10):1662–1676.
  • Palmeri ML, Qiang B, Chen S, et al. Guidelines for finite-element modeling of acoustic radiation force-induced shear wave propagation in tissue-mimicking media. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):78–92.
  • Palmeri ML, Yufeng D, Rouze NC, et al., editors. Dependence of shear wave spectral content on acoustic radiation force excitation duration and spatial beamwidth. 2014 IEEE International Ultrasonics Symposium; 2014 Sept 3-6. 2014; Chicago, IL.
  • Oestreicher HL. Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics. J Acoust Soc Am. 1951;23(6):707–714.
  • Carstensen EL, Parker KJ. Oestreicher and elastography. J Acoust Soc Am. 2015;138(4):2317–2325.
  • Chen S, Fatemi M, Greenleaf JF. Remote measurement of material properties from radiation force induced vibration of an embedded sphere. J Acoust Soc Am. 2002;112(3 Pt 1):884–889.
  • Urban MW, Kinnick RR, Greenleaf JF. Measuring the phase of vibration of spheres in a viscoelastic medium as an image contrast modality. J Acoust Soc Am. 2005;118(6):3465–3472.
  • Erpelding TN, Hollman KW, Donnell MO. Bubble-based acoustic radiation force elasticity imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(6):971–979.
  • Erpelding TN, Hollman KW, O’Donnell M. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects. Ultrasound Med Biol. 2007;33(2):263–269.
  • Hollman KW, O’Donnell M, Erpelding TN. Mapping elasticity in human lenses using bubble-based acoustic radiation force. Exp Eye Res. 2007;85(6):890–893.
  • Aglyamov SR, Karpiouk AB, Ilinskii YA, et al. Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: theoretical analysis and experimental verification. J Acoust Soc Am. 2007;122(4):1927–1936.
  • Karpiouk AB, Aglyamov SR, Ilinskii YA, et al. Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(11):2380–2387.
  • Urban MW, Nenadic IZ, Mitchell SA, et al. Generalized response of a sphere embedded in a viscoelastic medium excited by an ultrasonic radiation force. J Acoust Soc Am. 2011;130(3):1133–1141.
  • Urban MW, Fatemi M, Greenleaf JF. Modulation of ultrasound to produce multifrequency radiation force. J Acoust Soc Am. 2010;127(3):1228–1238.
  • Mitri FG, Trompette P, Chapelon JY. Detection of object resonances by vibro-acoustography and numerical vibrational mode identification. J Acoust Soc Am. 2003;114(5):2648–2653.
  • Mitri FG, Fellah ZE, Closset E, et al. Determination of object resonances by vibro-acoustography and their associated modes. Ultrasonics. 2004;42(1–9):537–543.
  • Mitri FG, Trompette P, Chapelon JY. Improving the use of vibro-acoustography for brachytherapy metal seed imaging: a feasibility study. IEEE Med Imaging. 2004;23(1):1–6.
  • Nguyen T-M, Song S, Arnal B, et al. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography. Biomedo. 2014;19(1):016013.
  • Provost J, Papadacci C, Arango JE, et al. 3D ultrafast ultrasound imaging in vivo. Phys Med Biol. 2014;59(19):L1–L13.
  • Gennisson JL, Provost J, Deffieux T, et al. 4-D ultrafast shear-wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(6):1059–1065.
  • Wang M, Byram B, Palmeri M, et al. On the precision of time-of-flight shear wave speed estimation in homogeneous soft solids: initial results using a matrix array transducer. IEEE Trans Ultrasonics Ferroelectr Freq Control. 2013;60(4):758–770.
  • Wang M, Byram B, Palmeri M, et al. Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array. Med Imaging, IEEE Trans. 2013;32(9):1671–1684.
  • Hollender P, Lipman SL, Trahey GE. Thee-dimensional single-track-location shear wave elasticity imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(12):1784–1794.
  • Zhao H, Song P, Urban MW, et al. Shear wave speed measurement using an unfocused ultrasound beam. Ultrasound Med Biol. 2012;38(9):1646–1655.
  • Nightingale K, Palmeri M, Trahey G. Analysis of contrast in images generated with transient acoustic radiation force. Ultrasound Med Biol. 2006;32(1):61–72.
  • Nightingale KR. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7(4):328–339.
  • Bouchard RR, Dahl JJ, Hsu SJ, et al. Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):63–76.
  • Song P, Zhao H, Manduca A, et al. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Med Imaging. 2012;31(9):1821–1832.
  • Song P, Urban MW, Manduca A, et al. Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams. IEEE Med Imaging. 2013;32(8):1435–1447.
  • Nabavizadeh A, Greenleaf JF, Fatemi M, et al. Optimized shear wave generation using hybrid beamforming methods. Ultrasound Med Biol. 2014;40(1):188–199.
  • Nabavizadeh A, Song P, Chen S, et al. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(4):647–662.
  • McAleavey S, Collins E, Kelly J, et al. Validation of SMURF estimation of shear modulus in hydrogels. Ultrason Imaging. 2009;31(2):131–150.
  • Elegbe EC, Menon MG, McAleavey SA. Comparison of two methods for the generation of spatially modulated ultrasound radiation force. IEEE Transactions Ultrasonics, Ferroelectrics Frequency Control. 2011;58(7):1344–1354.
  • Bercoff J, Tanter M, Fink M. Sonic boom in soft materials: the elastic Cerenkov effect. Appl Phys Lett. 2004;84(12):2202–2204.
  • Hoyt K, Hah Z, Hazard C, et al. Experimental validation of acoustic radiation force induced shear wave interference patterns. Phys Med Biol. 2012;57(1):21.
  • Silva GT, Greenleaf JF, Fatemi M. Linear arrays for vibro-acoustography: a numerical simulation study. Ultrason Imaging. 2004;26(1):1–17.
  • Chen S, Fatemi M, Kinnick R, et al. Comparison of stress field forming methods for vibro-acoustography. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(3):313–321.
  • Silva GT, Chen S, Frery AC, et al. Stress field forming of sector array transducers for vibro-acoustography. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(11):1943–1951.
  • Urban MW, Chalek C, Kinnick RR, et al. Implementation of vibro-acoustography on a clinical ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(6):1169–1181.
  • Urban MW, Chalek C, Haider B, et al. A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(3):535–551.
  • Kamimura HAS, Urban MW, Carneiro AAO, et al. Vibro-acoustography beam formation with reconfigurable arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(7):1421–1431.
  • Urban MW, Silva GT, Fatemi M, et al. Multifrequency vibro-acoustography. IEEE Med Imaging. 2006;25(10):1284–1295.
  • Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–1147.
  • Barr RG, Nakashima K, Amy D, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 2: breast. Ultrasound Med Biol. 2015;41(5):1148–1160.
  • Ferraioli G, Filice C, Castera L, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol. 2015;41(5):1161–1179.
  • Barr RG, Cosgrove D, Brock M, et al. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate. Ultrasound Med Biol. 2017;43(1):27–48.
  • Cosgrove D, Barr R, Bojunga J, et al. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 4. Thyroid. Ultrasound Med Biol. 2017;43(1):4–26.
  • Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. part 1: basic principles and technology. Ultraschall Med. 2013;34(02):169–184.
  • Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. part 2: clinical applications. Ultraschall Med. 2013;34(03):238–253.
  • Muller M, Gennisson JL, Deffieux T, et al. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasability study. Ultrasound Med Biol. 2009;35(2):219–229.
  • Chen S, Sanchez W, Callstrom MR, et al. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology. 2013;266(3):964–970.
  • Nightingale KR, Rouze NC, Rosenzweig SJ, et al. Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(1):165–175.
  • Deffieux T, Gennisson JL, Bousquet L, et al. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J Hepatol. 2015;62(2):317–324.
  • Brum J, Bernal M, Gennisson JL, et al. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol. 2014;59(3):505.
  • Nenadic IZ, Qiang B, Urban MW, et al. Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall. Phys Med Biol. 2013;58(8):2675–2695.
  • Shih CC, Huang CC, Zhou Q, et al. High-resolution acoustic radiation force impulse imaging for assessing corneal sclerosis. IEEE Med Imaging. 2013;32(7):1316–1324.
  • Gennisson J-L, Deffieux T, Macé E, et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol. 2010;36(5):789–801.
  • Gennisson J-L, Grenier N, Combe C, et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012;38(9):1559–1567.
  • Amador C, Urban MW, Chen S, et al. Shearwave Dispersion Ultrasound Vibrometry (SDUV) on swine kidney. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(12):2608–2619.
  • Lee WN, Pernot M, Couade M, et al. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Med Imaging. 2012;31(3):554–562.
  • Song P, Bi X, Mellema DC, et al. Quantitative assessment of left ventricular diastolic stiffness using cardiac shear wave elastography: a pilot study. J Ultrasound Med. 2016;35(7):1419–1427.
  • Hossain M, Moore CJ, Gallippi CM. Acoustic radiation force impulse-induced peak displacements reflect degree of anisotropy in transversely isotropic elastic materials. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(6):989–1001.
  • Tanter M, Bercoff J, Athanasiou A, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008;34(9):1373–1386.
  • Hatta T, Giambini H, Sukegawa K, et al. Quantified mechanical properties of the deltoid muscle using the shear wave elastography: potential implications for reverse shoulder arthroplasty. PLOS ONE. 2016;11(5):e0155102.
  • Deng Y, Rouze NC, Palmeri ML, et al. Ultrasonic shear wave elasticity imaging sequencing and data processing using a verasonics research scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):164–176.
  • Mitri FG, Fatemi M. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations. Ultrasonics. 2005;43(6):435–445.
  • Mitri FG, Chen S. Theory of dynamic acoustic radiation force experienced by solid cylinders. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(1 Pt 2):016306.
  • Mitri FG. Dynamic acoustic tractor beams. J Appl Phys. 2015;117(9):094903.
  • Marston PL. Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses—theory. J Acoust Soc Am. 1980;67(1):15–26.
  • Silva GT, Baggio AL. Designing single-beam multitrapping acoustical tweezers. Ultrasonics. 2015;56 (0):449–455.
  • Travagliati M, Shilton RJ, Pagliazzi M, et al. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Anal Chem. 2014;86(21):10633–10638.
  • Haake A, Neild A, Kim D-H, et al. Manipulation of cells using an ultrasonic pressure field. Ultrasound Med Biol. 2005;31(6):857–864.
  • Shamloo A, Boodaghi M. Design and simulation of a microfluidic device for acoustic cell separation. Ultrasonics. 2018;84:234–243.
  • Ding X, Lin S-CS, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci. 2012;109(28):11105–11109.
  • Lam KH, Li Y, Li Y, et al. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci Rep. 2016;6:37554.
  • Liu H-C, Li Y, Chen R, et al. Single-beam acoustic trapping of red blood cells and polystyrene microspheres in flowing red blood cell saline and plasma suspensions. Ultrasound Med Biol. 2017;43(4):852–859.
  • Lam KH, Hsu H-S, Li Y, et al. Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application. Biotechnol Bioeng. 2013;110(3):881–886.
  • Bernassau AL, Pga M, Beeley J, et al. Patterning of microspheres and microbubbles in an acoustic tweezers. Biomed Microdevices. 2013;15(2):289–297.
  • Cem D, Dahl PM, Yang Z, et al. Acoustic tractor beam. Phys Rev Lett. 2014;112(17):174302.
  • Courtney CRP, Demore CEM, Wu H, et al. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl Phys Lett. 2014;104(15):154103.
  • Chen D, Sun Y, Gudur Madhu SR, et al. Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells. Biophys J. 2015;108(1):32–42.
  • Dayton PA, Allen JS, Ferrara KW. The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am. 2002;112(5):2183–2192.
  • Rychak JJ, Klibanov AL, Hossack JA. Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(3):421–433.
  • Wang S, Wang CY, Unnikrishnan S, et al. Optical verification of microbubble response to acoustic radiation force in large vessels with in vivo results. Invest Radiol. 2015;50(11):772–784.
  • Wang S, Hossack JA, Klibanov AL, et al. Binding dynamics of targeted microbubbles in response to modulated acoustic radiation force. Phys Med Biol. 2014;59(2):465.
  • Borden MA, Streeter JE, Sirsi SR, et al. In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles. Mol Imaging. 2013;12(6):357–363.
  • Dayton PA, Rychak JJ. Molecular ultrasound imaging using microbubble contrast agents [Review]. Front Biosci. 2007;12:5124–5142.
  • Kokhuis TJA, Skachkov I, Naaijkens BA, et al. Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnol Bioeng. 2015;112(1):220–227.
  • Lum AFH, Borden MA, Dayton PA, et al. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Controlled Release. 2006;111(1):128–134.
  • Frinking PJA, Tardy I, Théraulaz M, et al. Effects of acoustic radiation force on the binding efficiency of BR55, a VEGFR2-specific ultrasound contrast agent. Ultrasound Med Biol. 2012;38(8):1460–1469.
  • Rychak JJ, Klibanov AL, Ley KF, et al. Enhanced targeting of ultrasound contrast agents using acoustic radiation force. Ultrasound Med Biol. 2007;33(7):1132–1139.
  • Gessner RC, Streeter JE, Kothadia R, et al. An in vivo validation of the application of acoustic radiation force to enhance the diagnostic utility of molecular imaging using 3-D ultrasound. Ultrasound Med Biol. 2012;38(4):651–660.
  • Hertz HM. Standing‐wave acoustic trap for nonintrusive positioning of microparticles. J Appl Phys. 1995;78(8):4845–4849.
  • Spengler JF, Coakley WT. Ultrasonic trap to monitor morphology and stability of developing microparticle aggregates. Langmuir. 2003;19(9):3635–3642.
  • Garvin KA, Hocking DC, Dalecki D. Controlling the spatial organization of cells and extracellular matrix proteins in engineered tissues using ultrasound standing wave fields. Ultrasound Med Biol. 2010;36(11):1919–1932.
  • Garvin KA, Dalecki D, Hocking DC. Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. Ultrasound Med Biol. 2011;37(11):1853–1864.
  • Garvin KA, VanderBurgh J, Hocking DC, et al. Controlling collagen fiber microstructure in three-dimensional hydrogels using ultrasound. J Acoust Soc Am. 2013;134(2):1491–1502.
  • Garvin KA, Dalecki D, Yousefhussien M, et al. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. J Acoust Soc Am. 2013;134(2):1483–1490.
  • Dalecki D, Hocking D. Ultrasound technologies for biomaterials fabrication and imaging. Ann Biomed Eng. 2015;43(3):747–761.
  • Ostrovsky L. Concentration of microparticles and bubbles in standing waves. J Acoust Soc Am. 2015;138(6):3607–3612.
  • Courtney CRP, Ong C-K, Drinkwater BW, et al. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proc Royal Soc London A: Math Phys Eng Sci. 2012;468(2138):337–360.
  • Yasuda K, Haupt SS, Umemura S, et al. Using acoustic radiation force as a concentration method for erythrocytes. J Acoust Soc Am. 1997;102(1):642–645.
  • Zhou YF. The application of ultrasound in 3D bio-printing. Molecules. 2016;21(5):25.
  • Wu L, Lin L, Qin Y-X. Enhancement of cell ingrowth, proliferation, and early differentiation in a three-dimensional silicon carbide scaffold using low-intensity pulsed ultrasound. Tissue Eng. 2015;21(1–2):53–61.
  • Amador Carrascal C, Aristizabal S, Greenleaf JF, et al. Phase aberration and attenuation effects on acoustic radiation force-based shear wave generation. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(2):222–232.
  • Nock L, Trahey GE, Smith SW. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J Acoust Soc Am. 1989;85(5):1819–1833.
  • Ng GC, Worrell SS, Freiburger PD, et al. A comparative evaluation of several algorithms for phase aberration correction. IEEE Trans Ultrasonics Ferroelectr Freq Control. 1994;41(5):631–643.
  • Liu DL, Waag RC. Correction of ultrasonic wavefront distortion using backpropagation and a reference waveform method for time-shift compensation. J Acoust Soc Am. 1994;96(2 Pt 1):649–660.
  • Urban MW, Bernal M, Greenleaf JF. Phase aberration correction using ultrasound radiation force and vibrometry optimization. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(6):1142–1153.
  • Herbert E, Pernot M, Montaldo G, et al. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(11):2388–2399.
  • McDannold N, Maier SE. Magnetic resonance acoustic radiation force imaging. Med Phys. 2008;35(8):3748–3758.
  • Kaye EA, Pauly KB. Adapting MRI acoustic radiation force imaging for in vivo human brain focused ultrasound applications. Magn Reson Med. 2013;69(3):724–733.
  • Vyas U, Kaye E, Pauly KB. Transcranial phase aberration correction using beam simulations and MR-ARFI. Med Phys. 2014;41(3):032901.
  • Charles M, Samuel P, Steven E, et al. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing. Phys Med Biol. 2016;61(15):5724.
  • Marsac L, Chauvet D, Larrat B, et al. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head. Med Phys. 2012;39(2):1141–1149.
  • Holbrook AB, Ghanouni P, Santos JM, et al. In vivo MR acoustic radiation force imaging in the porcine liver. Med Phys. 2011;38(9):5081–5089.
  • Larrat B, Pernot M, Montaldo G, et al. MR-guided adaptive focusing of ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(8):1734–1737.
  • Liu Y, Fite BZ, Mahakian LM, et al. Concurrent visualization of acoustic radiation force displacement and shear wave propagation with 7T MRI. PLoS ONE. 2015;10(10):e0139667.
  • Liu Y, Liu J, Fite BZ, et al. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity. Phys Med Biol. 2017;62(10):4083–4106.
  • Puts R, Ruschke K, Ambrosi TH, et al. A focused low-intensity pulsed ultrasound (FLIPUS) system for cell stimulation: physical and biological proof of principle. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(1):91–100.
  • Zhang S, Cheng JQ, Qin YX. Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS ONE. 2012;7(6):e38343.
  • Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. The Neuroscientist. 2010;17(1):25–36.
  • Commission IE. IEC, Geneva, Switzerland. 60601-2-37:2007+A1:2015.
  • Deng Y, Palmeri ML, Rouze NC, et al. Quantifying image quality improvement using elevated acoustic output in b-mode harmonic imaging. Ultrasound Med Biol. 2017;43(10):2416–2425.
  • Deng Y, Palmeri ML, Rouze NC, et al. Evaluating the benefit of elevated acoustic output in harmonic motion estimation in ultrasonic shear wave elasticity imaging. Ultrasound Med Biol. 2018;44(2):303–310.
  • Deng Y, Palmeri ML, Rouze NC, et al. Analyzing the impact of increasing mechanical index and energy deposition on shear wave speed reconstruction in human liver. Ultrasound Med Biol. 2015;41(7):1948–1957.
  • Hall TJ, Milkowski A, Garra B, et al., RSNA/QIBA: shear wave speed as a biomarker for liver fibrosis staging. 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic. 2013 Jul 21-25, 2013.
  • Palmeri M, Nightingale K, Fielding S, et al., RSNA QIBA ultrasound shear wave speed Phase II phantom study in viscoelastic media. 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan. 2015 Oct 21-24. 2015.
  • Radiological Society of North America Quantitative Imaging Biomarker Alliance (RSNA QIBA). Ultrasound shear wave speed technical commitee 2012. [cited 2018 Jul 1]. Available from: http://qibawiki.rsna.org/index.php?title=Ultrasound_SWS_tech_ctte

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.