212
Views
3
CrossRef citations to date
0
Altmetric
Review

How prosthetic design influences knee kinematics: a narrative review of tibiofemoral kinematics of healthy and joint-replaced knees

, , , , &
Pages 119-133 | Received 23 Oct 2018, Accepted 24 Dec 2018, Published online: 04 Jan 2019

References

  • Ritter MA, Meneghini RM. Twenty-year survivorship of cementless anatomic graduated component total knee arthroplasty. J Arthroplasty. 2010 Jun;25(4):507–513. PubMed PMID: 19427163.
  • Shan L, Shan B, Suzuki A, et al. Intermediate and long-term quality of life after total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Am. 2015 Jan 21;97(2):156–168. PubMed PMID: 25609443.
  • Banks SA, Hodge WA. Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res. 2004 Sep;426:187–193. PubMed PMID: 15346072.
  • Koo S, Andriacchi TP. The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech. 2008;41(6):1269–1273.
  • Karrholm J, Brandsson S, Freeman MA. Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. J Bone Joint Surg Br Vol. 2000 Nov;82(8):1201–1203. PubMed PMID: 11132288; eng.
  • Hill PF, Vedi V, Williams A, et al. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br Vol. 2000 Nov;82(8):1196–1198. PubMed PMID: 11132286; eng.
  • Gasparutto X, Moissenet F, Lafon Y, et al. Kinematics of the normal knee during dynamic activities: a synthesis of data from intracortical pins and biplane imaging. Appl Bionics Biomech. 2017;1908618.
  • Asano T, Akagi M, Tanaka K, et al. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–166.
  • Li G, DeFrate LE, Park SE, et al. In vivo articular cartilage contact kinematics of the knee an investigation using dual-orthogonal fluoroscopy and magnetic resonance image–based computer models. Am J Sports Med. 2005;33(1):102–107.
  • Dennis DA, Mahfouz MR, Komistek RD, et al. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005 Feb;38(2):241–253. PubMed PMID: 15598450.
  • Hamai S, Moro-Oka TA, Dunbar NJ, et al. In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int. 2013;2013:717546. PubMed PMID: 23509767; PubMed Central PMCID: PMCPMC3591185.
  • Qi W, Hosseini A, Tsai T-Y, et al. In vivo kinematics of the knee during weight bearing high flexion. J Biomech. 2013;46(9):1576–1582.
  • Murakami K, Hamai S, Okazaki K, et al. In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee. 2016 Mar;23(2):221–226. PubMed PMID: 26783190.
  • Chen CH, Li JS, Hosseini A, et al. Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture. 2012 Mar;35(3):467–471. PubMed PMID: 22169387; PubMed Central PMCID: PMCPMC3299839.
  • Zeng X, Ma L, Lin Z, et al. Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system. Sci Rep. 2017;7(1):4080.
  • Dennis DA, Komistek RD, Mahfouz MR. In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res. 2003 May;(410):114–130. PubMed PMID: 12771822. DOI:10.1097/01.blo.0000062385.79828.72
  • Bellemans J, Banks S, Victor J, et al. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg Br Vol. 2002;84(1):50–53.
  • Moro-Oka T-A, Muenchinger M, Canciani J-P, et al. Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2007;15(1):93–99.
  • Li G, Suggs J, Hanson G, et al. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. Jbjs. 2006;88(2):395–402.
  • Fujimoto E, Sasashige Y, Tomita T, et al. Different femorotibial contact on the weight-bearing: midflexion between normal and varus aligned knees after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23(6):1720–1728.
  • Fujimoto E, Sasashige Y, Tomita T, et al. Intra-operative gaps affect outcome and postoperative kinematics in vivo following cruciate-retaining total knee arthroplasty. Int Orthop. 2016;40(1):41–49.
  • Zeller IM, Sharma A, Kurtz WB, et al. Customized versus patient-sized cruciate-retaining total knee arthroplasty: an in vivo kinematics study using mobile fluoroscopy. J Arthroplasty. 2017;32(4):1344–1350.
  • Pan X-Q, Peng A-Q, Wang F, et al. Effect of tibial slope changes on femorotibial contact kinematics after cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25(11):3549–3555.
  • Insall JN, Scuderi GR, Komistek RD, et al. Correlation between condylar lift-off and femoral component alignment. Clin Orthop Relat Res. 2002;403:143–152.
  • Ranawat CS, Komistek RD, Rodriguez JA, et al. In vivo kinematics for fixed and mobile-bearing posterior stabilized knee prostheses. Clin Orthop Relat Res. 2004 Jan;418:184–190. PubMed PMID: 15043113.
  • Watanabe T, Ishizuki M, Muneta T, et al. Matched comparison of kinematics in knees with mild and severe varus deformity using fixed- and mobile-bearing total knee arthroplasty. Clin Biomech (Bristol, Avon). 2012 Nov;27(9):924–928. PubMed PMID: 22835859.
  • Mine T, Hoshi K, Gamada K, et al. Kinematic analysis of posterior-stabilized total knee arthroplasty during standing up from and sitting down on a chair. J Orthop Surg Res. 2016;11(1):142.
  • Nakamura E, Banks S, Tanaka A, et al. Three-dimensional tibiofemoral kinematics during deep flexion kneeling in a mobile-bearing total knee arthroplasty. J Arthroplasty. 2009;24(7):1120–1124.
  • Matsumoto K, Iwamoto K, Mori N, et al. In vivo kinematics of a low contact stress rotating platform total knee arthroplasty system under weight bearing and non-weight bearing condition. Bone Joint J. 2016;98(SUPP 3):28.
  • Yamazaki T, Futai K, Tomita T, et al. 3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy. Int J Comput Assist Radiol Surg. 2015;10(4):487–495.
  • Okamoto N, Nakamura E, Nishioka H, et al. In vivo kinematic comparison between mobile-bearing and fixed-bearing total knee arthroplasty during step-up activity. J Arthroplasty. 2014;29(12):2393–2396.
  • Pfitzner T, Moewis P, Stein P, et al. Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation. Knee Surg Sports Traumatol Arthrosc. 2018;26(6):1645–1655.
  • Murakami K, Hamai S, Okazaki K, et al. Kinematic analysis of stair climbing in rotating platform cruciate-retaining and posterior-stabilized mobile-bearing total knee arthroplasties. Arch Orthop Trauma Surg. 2017;137(5):701–711.
  • Argenson JN, Komistek RD, Mahfouz M, et al. A high flexion total knee arthroplasty design replicates healthy knee motion. Clin Orthop Relat Res. 2004 Nov;428:174–179. PubMed PMID: 15534540.
  • Kitagawa A, Tsumura N, Chin T, et al. In vivo comparison of knee kinematics before and after high-flexion posterior cruciate-retaining total knee arthroplasty. J Arthroplasty. 2010;25(6):964–969.
  • Seon J-K, Park J-K, Shin Y-J, et al. Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs. substituting designs. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2016–2022.
  • Shimizu N, Tomita T, Yamazaki T, et al. The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. J Arthroplasty. 2011;26(7):1031–1037.
  • Shimizu N, Tomita T, Yamazaki T, et al. Posterior sliding of the femur during stair ascending and descending in a high-flex posterior stabilized total knee arthroplasty. J Arthroplasty. 2013;28(10):1707–1711.
  • Watanabe T, Muneta T, Koga H, et al. In-vivo kinematics of high-flex posterior-stabilized total knee prosthesis designed for Asian populations. Int Orthop. 2016;40(11):2295–2302.
  • Grieco TF, Sharma A, Dessinger GM, et al. In vivo kinematic comparison of a bicruciate stabilized total knee arthroplasty and the normal knee using fluoroscopy. J Arthroplasty. 2018 Feb;33(2):565–571. PubMed PMID: 29066105.
  • Johal P, Williams A, Wragg P, et al. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’MRI. J Biomech. 2005;38(2):269–276.
  • Moro-Oka TA, Hamai S, Miura H, et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008 Apr;26(4):428–434. PubMed PMID: 17985389.
  • Feng Y, Tsai TY, Li JS, et al. Motion of the femoral condyles in flexion and extension during a continuous lunge. J Orthop Res. 2015 Apr;33(4):591–597. PubMed PMID: 25641056.
  • Matjacić Z. Gait analysis and synthesis: biomechanics, orthotics, prosthetics. Technol Health Care. 2009;17(5–6):445–461. PubMed PMID: 20051624.
  • Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003 May;(410):69–81. PubMed PMID: 12771818. DOI:10.1097/01.blo.0000062384.79828.3b
  • Kozanek M, Hosseini A, Liu F, et al. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech. 2009 Aug 25;42(12):1877–1884. PubMed PMID: 19497573; PubMed Central PMCID: PMCPMC2725209.
  • Li JS, Hosseini A, Cancre L, et al. Kinematic characteristics of the tibiofemoral joint during a step-up activity. Gait Posture. 2013 Sep;38(4):712–716. PubMed PMID: 23541765; PubMed Central PMCID: PMCPMC3722253.
  • Sanford BA, Williams JL, Huffman KD, et al. Tibiofemoral rotation during sit-to-stand activity after TKA. Orthopedics. 2016;39(3):S41–S44.
  • Hoshino Y, Tashman S. Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1268–1275. PubMed PMID: 22041716.
  • Mündermann A, Dyrby CO, Hurwitz DE, et al. Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity: reduced walking speed. Arthritis Rheumatol. 2004;50(4):1172–1178.
  • Sharma A, Komistek RD, Scuderi GR, et al. High-flexion TKA designs: what are their in vivo contact mechanics? Clin Orthop Relat Res. 2007;464:117–126.
  • Komistek RD, Scott RD, Dennis DA, et al. In vivo comparison of femorotibial contact positions for press-fit posterior stabilized and posterior cruciate–retaining total knee arthroplasties. J Arthroplasty. 2002;17(2):209–216.
  • Harman MK, Markovich GD, Banks SA, et al. Wear patterns on tibial plateaus from varus and valgus osteoarthritic knees. Clin Orthop Relat Res. 1998 Jul;352:149–158. PubMed PMID: 9678043.
  • Logan M, Dunstan E, Robinson J, et al. Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open “interventional” multiple resonance imaging. Am J Sports Med. 2004;32(3):720–726.
  • Grieco TF, Sharma A, Komistek RD, et al. Single versus multiple-radii cruciate-retaining total knee arthroplasty: an in vivo mobile fluoroscopy study. J Arthroplasty. 2016 Mar;31(3):694–701. PubMed PMID: 26614750.
  • Dennis DA, Komistek RD, Stiehl JB, et al. Range of motion after total knee arthroplasty: the effect of implant design and weight-bearing conditions. J Arthroplasty. 1998 Oct;13(7):748–752. PubMed PMID: 9802659.
  • Insall JN, Lachiewicz PF, Burstein AH. The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two to four-year clinical experience. J Bone Joint Surg Am. 1982 Dec;64(9):1317–1323. PubMed PMID: 7142239.
  • Zingde SM, Leszko F, Sharma A, et al. In vivo determination of cam-post engagement in fixed and mobile-bearing TKA. Clin Orthop Relat Res. 2014 Jan;472(1):254–262. PubMed PMID: 23990448; PubMed Central PMCID: PMCPMC3889432.
  • Belvedere C, Leardini A, Catani F, et al. In vivo kinematics of knee replacement during daily living activities: condylar and post‐cam contact assessment by three‐dimensional fluoroscopy and finite element analyses. J Orthop Res. 2017;35(7):1396–1403.
  • Moynihan AL, Varadarajan KM, Hanson GR, et al. In vivo knee kinematics during high flexion after a posterior-substituting total knee arthroplasty. Int Orthop. 2010 Apr;34(4):497–503. PubMed PMID: 19387643; PubMed Central PMCID: PMCPMC2903155.
  • Kurita M, Tomita T, Yamazaki T, et al. In vivo kinematics of high-flex mobile-bearing total knee arthroplasty, with a new post-cam design, in deep knee bending motion. Int Orthop. 2012;36(12):2465–2471.
  • Dennis DA, Komistek RD, Mahfouz MR, et al. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res. 2003 Nov;(416):37–57. PubMed PMID: 14646738. DOI:10.1097/01.blo.0000092986.12414.b5.
  • Banks SA, Hodge WA. 2003 hap paul award paper of the international society for technology in arthroplasty. Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J Arthroplasty. 2004 Oct;19(7):809–816. PubMed PMID: 15483794.
  • Dennis DA, Komistek RD, Colwell CE Jr. et al. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998 Nov;356:47–57. PubMed PMID: 9917667.
  • Suggs JF, Hanson GR, Park SE, et al. Patient function after a posterior stabilizing total knee arthroplasty: cam-post engagement and knee kinematics. Knee Surg Sports Traumatol Arthrosc. 2008 Mar;16(3):290–296. PubMed PMID: 18196219.
  • Hanson GR, Suggs JF, Kwon YM, et al. In vivo anterior tibial post contact after posterior stabilizing total knee arthroplasty. J Orthop Res. 2007 Nov;25(11):1447–1453. PubMed PMID: 17557322.
  • Watanabe T, Muneta T, Sekiya I, et al. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty. Knee. 2015 Dec;22(6):527–534. PubMed PMID: 26014342.
  • Banks SA, Bellemans J, Nozaki H, et al. Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res. 2003 May;(410):131–138. PubMed PMID: 12771823. DOI:10.1097/01.blo.0000063121.39522.19
  • Kim YH, Choi Y, Kim JS. Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study. J Bone Joint Surg Am. 2009 Aug;91(8):1874–1881. PubMed PMID: 19651944.
  • Suggs JF, Kwon YM, Durbhakula SM, et al. In vivo flexion and kinematics of the knee after TKA: comparison of a conventional and a high flexion cruciate-retaining TKA design. Knee Surg Sports Traumatol Arthrosc. 2009 Feb;17(2):150–156. PubMed PMID: 18839144.
  • Cates HE, Komistek RD, Mahfouz MR, et al. In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty. 2008;23(7):1057–1067.
  • Okamoto N, Breslauer L, Hedley AK, et al. In vivo knee kinematics in patients with bilateral total knee arthroplasty of 2 designs. J Arthroplasty. 2011 Sep;26(6):914–918. PubMed PMID: 20870383.
  • Kessler O, Durselen L, Banks S, et al. Sagittal curvature of total knee replacements predicts in vivo kinematics. Clin Biomech (Bristol, Avon). 2007 Jan;22(1):52–58. PubMed PMID: 17029673.
  • Stiehl JB, Komistek RD, Cloutier J-M, et al. The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty. 2000;15(5):545–550.
  • Pritchett JW. Patients prefer a bicruciate-retaining or the medial pivot total knee prosthesis. J Arthroplasty. 2011 Feb;26(2):224–228. PubMed PMID: 20932707.
  • Cherian JJ, Kapadia BH, Banerjee S, et al. Bicruciate-retaining total knee arthroplasty: a review. J Knee Surg. 2014 Jun;27(03):199–206. PubMed PMID: 24764232.
  • Victor J, Mueller JK, Komistek RD, et al. In vivo kinematics after a cruciate-substituting TKA. Clin Orthop Relat Res. 2010 Mar;468(3):807–814. PubMed PMID: 19760468; PubMed Central PMCID: PMCPMC2816757.
  • Daniilidis K, Skwara A, Vieth V, et al. Highly conforming polyethylene inlays reduce the in vivo variability of knee joint kinematics after total knee arthroplasty. Knee. 2012 Aug;19(4):260–265. PubMed PMID: 21561778.
  • Peters CL, Mulkey P, Erickson J, et al. Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design. Clin Orthop Relat Res. 2014 Jan;472(1):175–180. PubMed PMID: 23690153; PubMed Central PMCID: PMCPMC3889414.
  • Massin P, Boyer P, Sabourin M. Less femorotibial rotation and AP translation in deep-dished total knee arthroplasty. An intraoperative kinematic study using navigation. Knee Surg Sports Traumatol Arthrosc. 2012 Sep;20(9):1714–1719. PubMed PMID: 22057354.
  • Shimmin A, Martinez-Martos S, Owens J, et al. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Knee. 2015 Dec;22(6):522–526. PubMed PMID: 25999125.
  • Dyrby CO, Andriacchi TP. Secondary motions of the knee during weight bearing and non-weight bearing activities. J Orthop Res. 2004 Jul;22(4):794–800. PubMed PMID: 15183436.
  • Andriacchi TP, Dyrby CO, Johnson TS. The use of functional analysis in evaluating knee kinematics. Clin Orthop Relat Res. 2003;410:44–53.
  • Lafortune MA, Cavanagh PR, Sommer HJ 3rd, et al. Three-dimensional kinematics of the human knee during walking. J Biomech. 1992 Apr;25(4):347–357. PubMed PMID: 1583014.
  • Nycz A, Young MA, Hamel WR, editors. A bio-robotics approach to real-time skeletal joint fluoroscopy during natural movements. Robotics and Automation (ICRA), 2011 IEEE International Conference on; 2011, Shanghai, China: IEEE.
  • Serna-Berna R, Lizaur-Utrilla A, Vizcaya-Moreno MF, et al. Cruciate-retaining vs posterior-stabilized primary total arthroplasty. Clinical outcome comparison with a minimum follow-up of 10 years. J Arthroplasty. 2018 Aug;33(8):2491–2495. PubMed PMID: 29691173.
  • Scarvell JM, Perriman DM, Smith PN, et al. Total knee arthroplasty using bicruciate-stabilized or posterior-stabilized knee implants provided comparable outcomes at 2 years: a prospective, multicenter, randomized, controlled, clinical trial of patient outcomes. J Arthroplasty. 2017;32(11):3356–3363. e1.
  • Kornilov N, Lindberg MF, Gay C, et al. Higher physical activity and lower pain levels before surgery predict non-improvement of knee pain 1 year after TKA. Knee Surg Sports Traumatol Arthrosc. 2017;1–11. DOI:10.1007/s00167-017-4713-5
  • Kawamura H, Bourne RB. Factors affecting range of flexion after total knee arthroplasty. J Orthop Sci. 2001;6(3):248–252. PubMed PMID: 11484119.
  • Churchill JL, Khlopas A, Sultan AA, et al. Gap-balancing versus measured resection technique in total knee arthroplasty: acomparison study. J Knee Surg. 2018 Jan;31(1):13–16. PubMed PMID: 29179222.
  • Yeo J-H, Seon J-K, Lee D-H, et al. No difference in outcomes and gait analysis between mechanical and kinematic knee alignment methods using robotic total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018. doi:10.1007/s00167-018-5133-x
  • McGinn T, Chughtai M, Khlopas A, et al. Early outpatient physical therapy may improve range-of-motion in primary total knee arthroplasty. J Knee Surg. 2017;30(7):618–621.
  • Chughtai M, Elmallah RK, Cherian JJ, et al. Rehabilitation and pain management modalities in total knee arthroplasty. J Knee Surg. 2016 Apr;29(03):179. PubMed PMID: 27023723.
  • Dimitriou D, Tsai T-Y, Park KK, et al. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: in-vivo surgical transepicondylar axis and geometric center axis analyses. J Biomech. 2016;49(9):1891–1898.
  • Dennis DA, Komistek RD, Mahfouz MR, et al. A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res. 2004;428:180–189.
  • Kim YH, Sohn KS, Kim JS. Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am. 2005 Jul;87(7):1470–1475. PubMed PMID: 15995113.
  • Kotani A, Yonekura A, Bourne RB. Factors influencing range of motion after contemporary total knee arthroplasty. J Arthroplasty. 2005;20(7):850–856.
  • Wasielewski RC, Komistek RD, Zingde SM, et al. Lack of axial rotation in mobile-bearing knee designs. Clin Orthop Relat Res. 2008 Nov;466(11):2662–2668. PubMed PMID: 18581194; PubMed Central PMCID: PMCPMC2565026.
  • Hazaki S, Yokoyama Y, Inoue H. A radiographic analysis of anterior-posterior translation in total knee arthroplasty. J Orthop Sci. 2001;6(5): 390–396. PubMed PMID: 11845347.
  • Pinskerova V, Samuelson KM, Stammers J, et al. The knee in full flexion: an anatomical study. J Bone Joint Surg Br Vol. 2009 Jun;91-B(6):830–834. PubMed PMID: 19483242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.