690
Views
25
CrossRef citations to date
0
Altmetric
Review

Mechanical properties and performances of contemporary drug-eluting stent: focus on the metallic backbone

, , , , , , , , , , , , & show all
Pages 211-228 | Received 31 Jul 2018, Accepted 18 Jan 2019, Published online: 08 Feb 2019

References

  • Sigwart U, Puel J, Mirkovitch V, et al. intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty. N Engl J Med. 1987;316(12):701–706.
  • Venkitachalam L, Kip KE, Selzer F, et al. Twenty-year evolution of percutaneous coronary intervention and its impact on clinical outcomes: a report from the National Heart, Lung, and Blood Institute-sponsored, multicenter 1985–1986 PTCA and 1997–2006 Dynamic Registries. Circ Cardiovasc Interv. 2009;2(1):6–13.
  • Serruys PW, de Jaegere P, Kiemeneij F, et al. a comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331(8):489–495.
  • Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331(8):496–501.
  • Farooq V, Gogas BD, Serruys PW. Restenosis: delineating the numerous causes of drug-eluting stent restenosis. Circ Cardiovasc Interv. 2011;4(2):195–205.
  • Bønaa KH, Mannsverk J, Wiseth R, et al. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375(13):1242–1252.
  • Schömig A, Dibra A, Windecker S, et al. a meta-analysis of 16 randomized trials of sirolimus-eluting stents versus paclitaxel-eluting stents in patients with coronary artery disease. J Am Coll Cardiol. 2007;50(14):1373–1380.
  • Rizas KD, Mehilli J. Stent polymers: do they make a difference? Circ Cardiovasc Interv. 2016;9(6).
  • Chen W, Habraken TCJ, Hennink WE, et al. Polymer-free drug-eluting stents: an overview of coating strategies and comparison with polymer-coated drug-eluting stents. Bioconjug Chem. 2015;26(7):1277–1288.
  • El-Hayek G, Bangalore S, Casso Dominguez A, et al. Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. JACC Cardiovasc Interv. 2017;10(5):462–473.
  • Navarese EP, Kowalewski M, Cortese B, et al. Short and long-term safety and efficacy of polymer-free vs. durable polymer drug-eluting stents. A comprehensive meta-analysis of randomized trials including 6178 patients. Atherosclerosis. 2014;233(1):224–231.
  • Kandzari DE, Koolen JJ, Doros G, et al. ultrathin bioresorbable polymer sirolimus-eluting stents versus thin durable polymer everolimus-eluting stents. J Am Coll Cardiol. 2018;72(25):3287–3297.
  • Cassese S, Byrne RA, Tada T, et al. Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart. 2014;100(2):153–159.
  • Taniwaki M, Stefanini GG, Silber S, et al. 4-year clinical outcomes and predictors of repeat revascularization in patients treated with new-generation drug-eluting stents: a report from the resolute all-comers trial (a randomized comparison of a zotarolimus-eluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J Am Coll Cardiol. 2014;63(16):1617–1625.
  • Byrne RA, Serruys PW, Baumbach A, et al. Report of a European society of cardiology-european association of percutaneous cardiovascular Interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur Heart J. 2015;36(38):2608–2620.
  • Rogers C, Edelman ER. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation. 1995;91(12):2995–3001.
  • Hoffmann R, Jansen C, König A, et al. Stent design related neointimal tissue proliferation in human coronary arteries; an intravascular ultrasound study. Eur Heart J. 2001;22(21):2007–2014.
  • Garasic JM, Edelman ER, Squire JC, et al. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation. 2000;101(7):812–818.
  • Colombo A, Stankovic G, Moses JW. Selection of coronary stents. J Am Coll Cardiol. 2002;40(6):1021–1033.
  • Schrader SC, Beyar R. Evaluation of the compressive mechanical properties of endoluminal metal stents. Catheterization Cardiovasc Diagn. 1998;44(2):179–187.
  • Onuma Y, Serruys PW. Bioresorbable Scaffold. Circulation. 2011;123(7):779–797.
  • Roy T, Chanda A. computational modelling and analysis of latest commercially available coronary stents during deployment. Procedia Mater Sci. 2014;5:2310–2319.
  • O’Brien BJ, Stinson JS, Larsen SR, et al. A platinum–chromium steel for cardiovascular stents. Biomaterials. 2010;31(14):3755–3761.
  • Dubois C, Jorge C. Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices. 2015;8:359–367.
  • Bandar ALM, Rosaire M, Stephen Y. coronary stents fracture: an engineering approach (review). Mater Sci Appl. 2013;2013(10):606–621.
  • Mani G, Feldman MD, Patel D, et al. Coronary stents: a materials perspective. Biomaterials. 2007;28(9):1689–1710.
  • Hou L-D, Li Z, Pan Y, et al. A review on biodegradable materials for cardiovascular stent application. Front Mater Sci. 2016;10(3):238–259.
  • Grogan JA, Leen SB, McHugh PE. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. J Mech Behav Biomed Mater. 2012;12:129–138.
  • Scanlon JJ, Onuma Y, Serruys PW, et al. Bioresorbable scaffolds: from basic concept to clinical applications. New York: CRC Press/Taylor & Francis Group; 2017. Chapter 3.1, Unlocking scaffold mechanical properties. p. 44–52.
  • Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Delivery Rev. 2016;107:367–392.
  • Kastrati A, Schömig A, Dirschinger J, et al. Increased risk of restenosis after placement of gold-coated stents: results of a randomized trial comparing gold-coated with uncoated steel stents in patients with coronary artery disease. Circulation. 2000;101(21):2478–2483.
  • Koster R, Vieluf D, Kiehn M, et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet. 2000;356(9245):1895–1897.
  • Eric Jones J, Chen M, Yu Q. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings. J Biomed Mater Res B Appl Biomater. 2014;102(7):1363–1374.
  • Habibzadeh S, Shum-Tim D, Omanovic S. Surface and electrochemical characterization of irti-oxide coatings: towards the improvement of radiopacity for coronary stent applications. Int J Electrochem Sci. 2013;8:6291-6310.
  • Mohan CC, Prabhath A, Cherian AM, et al. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting. Nanoscale. 2015;7(2):832–841.
  • Schmidt W, Lanzer P, Behrens P, et al. A comparison of the mechanical performance characteristics of seven drug-eluting stent systems. Catheterization Cardiovasc Interventions. 2009;73(3):350–360.
  • Wang Y, Truong TN, Yen C, et al. Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt‐alloy, and stainless steel stents. Magn Reson Med. 2003;49(5):972–976.
  • Scott NA, Pettigrew RI. Absence of movement of coronary scents after placement in a magnetic resonance imaging field. Am J Cardiol. 1994;73(12):900–901.
  • Shellock FG, Forder JR. Drug eluting coronary stent: in vitro evaluation of magnet resonance safety at 3 Tesla. J Cardiovasc Magn Reson. 2005;7(2):415–419.
  • Jorge C, Dubois C. Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices (Auckl). 2015;8:359–367.
  • Trost DW, Zhang HL, Prince MR, et al. Three-dimensional MR angiography in imaging platinum alloy stents. J Magn Reson Imaging. 2004;20(6):975–980.
  • Bhargava B, De Scheerder I, Ping QB, et al. A novel platinum-iridium, potentially gamma radioactive stent: evaluation in a porcine model. Catheter Cardiovasc Interv. 2000;51(3):364–368.
  • Sangiorgi G, Melzi G, Agostoni P, et al. Engineering aspects of stents design and their translation into clinical practice. Ann Ist Super Sanita. 2007;43(1):89–100.
  • Maitz MF, Shevchenko N. Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood. J Biomed Mater Res A. 2006;76(2):356–365.
  • Shih CC, Lin SJ, Chung KH, et al. Increased corrosion resistance of stent materials by converting current surface film of polycrystalline oxide into amorphous oxide. J Biomed Mater Res. 2000;52(2):323–332.
  • Yeung KW, Poon RW, Chu PK, et al. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A. 2007;82(2):403–414.
  • Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents: material and design considerations. Eur Radiol. 2004;14(2):292–301.
  • Demir A, Previtali B, Ge Q, et al. Biodegradable magnesium coronary stents: material, design and fabrication. Int J Comput Integr Manuf. 2013;27(10):936–945.
  • Rapetto C, Leoncini M. Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis. 2017;9(S9): S903-S913.
  • Erne P, Schier M, Resink TJ. The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol. 2006;29(1):11–16.
  • Witte F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010;6(5):1680–1692.
  • Haude M, Lootz D, Degen H, et al. Bioresorbable scaffolds: from basic concept to clinical applications. New York: CRC Press/Taylor & Francis Group; 2017. Chapter 2.4, Basics of biodegradation of magnesium. p. 29–37.
  • Waksman R, Lipinski MJ, Acampado E, et al. Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt model. Circ Cardiovasc Interv. 2017;10:8.
  • Haude M, Ince H, Kische S, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention. 2017;13(4):432–439.
  • Neumann F-J, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2018;40(2):87-165.
  • O’Brien B, Zafar H, Ibrahim A, et al. Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng. 2016;44(2):523–535.
  • Govindarajan T, Shandas R. A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers. 2014;6(9):2309–2331.
  • Fan Y, Li X, Yang R. The surface modification methods for constructing polymer-coated stents. Int J Polym Sci. 2018;7:2018.
  • Palmerini T, Kirtane AJ, Stone G. Bare-metal and drug-eluting coronary stents. In: Teirstein PS, Topol EJ, editors. Textbook of interventional cardiology. Philadelphia: Elsevier/Saunders; 2016. p. 244–290.
  • Foin N, Sen S, Allegria E, et al. Maximal expansion capacity with current DES platforms: a critical factor for stent selection in the treatment of left main bifurcations? EuroIntervention. 2013;8(11):1315–1325.
  • Prabhu S, Schikorr T, Mahmoud T, et al. Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents. EuroIntervention. 2012;8(2):275–281.
  • Gurbel PA, Callahan KP, Malinin AI, et al. Could stent design affect platelet activation? Results of the Platelet Activation in STenting (PAST) study. J Invasive Cardiol. 2002;14(10):584–589.
  • Sciahbasi A, Pendenza G, Golino L, et al. Closed versus open cell stent for high-risk percutaneous coronary interventions in ST-elevation acute myocardial infarction: the closed versus open cells stent for high risk percutaneous coronary interventions in ST-elevation acute myocardial infarction (COCHISE) pilot study. Am Heart J. 2013;165(3):415–420.
  • Ormiston JA, Webber B, Webster MWI. Stent longitudinal integrity: bench insights into a clinical problem. JACC Cardiovasc Interv. 2011;4(12):1310–1317.
  • Tanigawa J, Barlis P, Dimopoulos K, et al. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int J Cardiol. 2009;134(2):180–188.
  • Foin N, Mario DC, Francis DP, et al. Stent flexibility versus concertina effect: mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab. Int J Cardiol. 2013;164(3):259–261.
  • Schmidt W, Lanzer P. Catheter-based cardiovascular interventions: a knowledge-based approach. Heidelberg: Springer; 2013. Chapter 27, Instrumentation. p. 445-472.
  • Hong MK, Park SW, Lee CW, et al. Intravascular ultrasound comparison of chronic recoil among different stent designs. Am J Cardiol. 1999;84(10):1247–1250, a1248.
  • Biondi-Zoccai GG, Agostoni P, Sheiban I. Last nail in the coffin of late lumen loss? EuroIntervention. 2008;4(1):2.
  • Welt F, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol. 2002;22(11):1769–1776.
  • Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems - guidance for industry and FDA staff. [cited 2018 Jul 25]. Available from: https://www.fda.gov/MedicalDevices/ucm071863.htmon25July2018.
  • Kim DB, Choi H, Joo SM, et al. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility. Artif Organs. 2013;37(4):368–379.
  • Watson T, Webster MWI, Ormiston JA, et al. Long and short of optimal stent design. Open Heart. 2017;4(2).
  • Pilgrim T, Windecker S. Drug-eluting stent technology: progress beyond the polymer. Eur Heart J. 2014;35(30):1991–1995.
  • Cook S, Eshtehardi P, Kalesan B, et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J. 2012;33(11):1334–1343.
  • Collet C, Sotomi Y, Cavalcante R, et al. Coronary stent thrombosis: what have we learned? J Thorac Dis. 2016;8(7):1398–1405.
  • He Y, Maehara A, Mintz GS, et al. Intravascular ultrasound assessment of cobalt chromium versus stainless steel drug-eluting stent expansion. Am J Cardiol. 2010;105(9):1272–1275.
  • Onuma Y, Serruys PW, Gomez J, et al. Comparison of in vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent. Catheter Cardiovasc Interv. 2011;78(1):3–12.
  • Aziz S, Morris JL, Perry RA, et al. Stent expansion: a combination of delivery balloon underexpansion and acute stent recoil reduces predicted stent diameter irrespective of reference vessel size. Heart. 2007;93(12):1562–1566.
  • Kastrati A, Schomig A, Elezi S, et al. Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol. 1997;30(6):1428–1436.
  • Kuntz RE, Safian RD, Carrozza JP, et al. The importance of acute luminal diameter in determining restenosis after coronary atherectomy or stenting. Circulation. 1992;86(6):1827–1835.
  • Tanimoto S, Serruys PW, Thuesen L, et al. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv. 2007;70(4):515–523.
  • Kitahara H, Waseda K, Yamada R, et al. Acute stent recoil and optimal balloon inflation strategy: an experimental study using real-time optical coherence tomography. EuroIntervention. 2016;12(2):e190–198.
  • Schmidt W, Lanzer P, Behrens P, et al. Direct comparison of coronary bare metal vs. drug-eluting stents: same platform, different mechanics? Eur J Med Res. 2018;23(1):2.
  • Ota T, Ishii H, Sumi T, et al. Impact of coronary stent designs on acute stent recoil. J Cardiol. 2014;64(5):347–352.
  • Borghi TC, Ribamar Costa J, Abizaid A, et al. Comparison of acute stent recoil between the everolimus-eluting bioresorbable vascular scaffold and two different drug-eluting metallic stents. Revista Brasileira de Cardiologia Invasiva (English Edition). 2013;21(4):326–331.
  • van Bommel RJ, Lemmert ME, van Mieghem NM, et al. Occurrence and predictors of acute stent recoil-A comparison between the xience prime cobalt chromium stent and the promus premier platinum chromium stent. Catheter Cardiovasc Interv. 2018;91(3):E21–e28.
  • Kuramitsu S, Hiromasa T, Enomoto S, et al. Incidence and clinical impact of stent fracture after promus element platinum chromium everolimus-eluting stent implantation. JACC Cardiovasc Interv. 2015;8(9):1180-1188.
  • Kuramitsu S, Iwabuchi M, Haraguchi T, et al. Incidence and clinical impact of stent fracture after everolimus-eluting stent implantation. Circulation: Cardiovasc Interventions. 2012;5(5):663–671.
  • Kuramitsu S, Iwabuchi M, Yokoi H, et al. Incidence and clinical impact of stent fracture after the nobori biolimus‐eluting stent implantation. J Am Heart Assoc. 2014. DOI:10.1161/JAHA.113.000703.
  • Kan J, Ge Z, Zhang -J-J, et al. Incidence and clinical outcomes of stent fractures on the basis of 6,555 patients and 16,482 drug-eluting stents from 4 centers. JACC Cardiovasc Interv. 2016;9(11):1115–1123.
  • Ohya M, Kadota K, Tada T, et al. Stent fracture after sirolimus-eluting stent implantation: 8-year clinical outcomes. Circ Cardiovasc Interv. 2015;8(8):e002664.
  • Park M-W, Chang K, Her SH, et al. Incidence and clinical impact of fracture of drug-eluting stents widely used in current clinical practice: comparison with initial platform of sirolimus-eluting stent. J Cardiol. 2012;60(3):215–221.
  • Nakazawa G, Finn AV, Vorpahl M, et al. Incidence and predictors of drug-eluting stent fracture in human coronary artery a pathologic analysis. J Am Coll Cardiol. 2009;54(21):1924–1931.
  • Canan T, Lee MS. Drug‐eluting stent fracture: incidence, contributing factors, and clinical implications. Catheterization Cardiovasc Interventions. 2010;75(2):237–245.
  • Ormiston JA, Webber B, Ubod B, et al. Coronary stent durability and fracture: an independent bench comparison of six contemporary designs using a repetitive bend test. EuroIntervention. 2015;10(12):1449–1455.
  • Williams PD, Mamas MA, Morgan KP, et al. Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms. EuroIntervention. 2012;8(2):267–274.
  • Samer A, Nizar S, Andrew W, et al. Incidence and mechanisms of longitudinal stent deformation associated with Biomatrix, Resolute, Element, and Xience stents: angiographic and case-by-case review of 1,800 PCIs. Catheterization Cardiovasc Interventions. 2015;86(6):1002–1011.
  • Rhee TM, Park KW, Lee JM, et al. Predictors and long-term clinical outcome of longitudinal stent deformation: insights from pooled analysis of Korean multicenter drug-eluting stent cohort. Circ Cardiovasc Interv. 2017;10(11).
  • Mamas MA, Williams PD. Longitudinal stent deformation: insights on mechanisms, treatments and outcomes from the food and drug administration manufacturer and user facility device experience database. EuroIntervention. 2012;8(2):196–204.
  • Guler A, Guler Y, Acar E, et al. Clinical, angiographic and procedural characteristics of longitudinal stent deformation. Int J Cardiovasc Imaging. 2016;32(8):1163–1170.
  • Arnous S, Shakhshir N, Wiper A, et al. Incidence and mechanisms of longitudinal stent deformation associated with Biomatrix, Resolute, Element, and Xience stents: angiographic and case-by-case review of 1,800 PCIs. Catheter Cardiovasc Interv. 2015;86(6):1002–1011.
  • Ormiston JA, Webber B, Ubod B, et al. Stent longitudinal strength assessed using point compression: insights from a second-generation, clinically related bench test. Circ Cardiovasc Interv. 2014;7(1):62–69.
  • Choudhury TR, Al-Saigh S, Burley S, et al. Longitudinal deformation bench testing using a coronary artery model: a new standard? Open Heart. 2017;4(2).
  • Yamada R, Okura H, Kume T, et al. Impact of stent platform on longitudinal stent deformation: an in vivo frequency domain optical coherence tomography study. Cardiovasc Interv Ther. 2017;32(3):199–205.
  • Barragan P, Garitey V, Mouneimne K, et al. Longitudinal compression behaviour of coronary stents: a bench-top comparative study. EuroIntervention. 2014;9(12):1454–1462.
  • Sabbah M, Kadota K, Kubo S, et al. Clinical and angiographic outcomes of axial stent deformations in unrestricted real world patient population. J Interv Cardiol. 2017;30(6):550–557.
  • Giannini F, Candilio L, Mitomo S, et al. A practical approach to the management of complications during percutaneous coronary intervention. JACC Cardiovasc Interv. 2018;11(18):1797–1810.
  • Poon E, Barlis P, Moore S, et al. Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery. J Biomech. 2014;47(12):2843–2851.
  • Foin N, Gutiérrez-Chico J, Nakatani S, et al. incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance implications for the management of incomplete stent apposition. Circulation: Cardiovasc Interventions. 2014;7(2):180–189.
  • Noad RL, Hanratty CG, Walsh SJ. Clinical impact of stent design. Interventional Cardol Rev. 2011;9(2):89.
  • Souteyrand G, Amabile N, Mangin L, et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J. 2016;37(15):1208–1216.
  • Foin N, Alegria E, Sen S, et al. Importance of knowing stent design threshold diameters and post-dilatation capacities to optimise stent selection and prevent stent overexpansion/incomplete apposition during PCI. Int J Cardiol. 2013;166(3):755–758.
  • Guérin P, Pilet P, Finet G, et al. Drug-eluting stents in bifurcations bench study of strut deformation and coating lesions. Circulation: Cardiovasc Interventions. 2010;3(2):120–126.
  • Ng J, Foin N, Ang HY, et al. Over-expansion capacity and stent design model: an update with contemporary DES platforms. Int J Cardiol. 2016;221:171–179.
  • Fam JM, Mortier P, De Beule M, et al. Defining optimal stent overexpansion strategies for left main stenting: insights from bench testing. AsiaIntervention. 2017;3:111–120.
  • Ye Y, Qian H, Yang M, et al. Over-expansion of drug-eluting stents in patients with left main coronary artery disease: an in vivo study. J Int Med Res. 2017;45(4):1406–1416.
  • Tenekecioglu E, Torii R, Bourantas CV, et al. Non-Newtonian pulsatile shear stress assessment: a method to differentiate bioresorbable scaffold platforms. Eur Heart J. 2017;38(33):2570.
  • Ng J, Bourantas CV, Torii R, et al. Local hemodynamic forces after stenting: implications on restenosis and thrombosis. Arterioscler Thromb Vasc Biol. 2017;37(12):2231–2242.
  • Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable Scaffold. Emerging Reality Future Directions. 2017;120(8):1341–1352.
  • Bourantas CV, Räber L, Zaugg S, et al. Impact of local endothelial shear stress on neointima and plaque following stent implantation in patients with ST-elevation myocardial infarction: a subgroup-analysis of the COMFORTABLE AMI–IBIS 4 trial. Int J Cardiol. 2015;186:178–185.
  • Shishido K, Antoniadis AP, Takahashi S, et al. Effects of low endothelial shear stress after stent implantation on subsequent neointimal hyperplasia and clinical outcomes in humans. J Am Heart Assoc. 2016;5(9).
  • Farb A, Weber DK, Kolodgie FD, et al. Morphological predictors of restenosis after coronary stenting in humans. Circulation. 2002;105(25):2974–2980.
  • Timmins LH, Miller MW, Jr FJ, et al. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab Invest. 2011;91(6).
  • Kolandaivelu K, Swaminathan R, Gibson WJ, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011;123(13):1400–1409.
  • Somaratne JB, Whitbourn RJ. TAXUS® Element™ stent system. Interventional Cardiol. 2011;3(6):641–648.
  • Foin N, Lee RD, Torii R, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol. 2014;177(3):800–808.
  • Pache J, Dibra A, Mehilli J, et al. Drug-eluting stents compared with thin-strut bare stents for the reduction of restenosis: a prospective, randomized trial. Eur Heart J. 2005;26(13):1262–1268.
  • Joner M, Nakazawa G, Finn AV, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 2008;52(5):333–342.
  • Steigerwald K, Ballke S, Quee SC, et al. Vascular healing in drug-eluting stents: differential drug-associated response of limus-eluting stents in a preclinical model of stent implantation. EuroIntervention. 2012;8(6):752–759.
  • Soucy NV, Feygin JM, Tunstall R, et al. Strut tissue coverage and endothelial cell coverage: a comparison between bare metal stent platforms and platinum chromium stents with and without everolimus-eluting coating. EuroIntervention. 2010;6(5):630–637.
  • Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents. Arterioscler Thromb Vasc Biol. 2007;27(7):1500–1510.
  • Barlis P, Regar E, Serruys PW, et al. An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur Heart J. 2010;31(2):165–176.
  • Kastrati A, Mehilli J, Dirschinger J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103(23):2816–2821.
  • Rittersma S, de Winter RJ, Koch KT, et al. Impact of strut thickness on late luminal loss after coronary artery stent placement. Am J Cardiol. 2004;93(4):477–480.
  • Jü P, Kastrati A, Mehilli J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol. 2003;41(8):1283–1288.
  • Silenzi S, Grossi P, Mariani L, et al. Effect on clinical restenosis of an ultra‐thin‐strut bare metal cobalt‐chromium stent versus a thin‐strut stainless steel stent. J Interv Cardiol. 2016;29(3):300–310.
  • Lupi A, Secco G, Rognoni A, et al. Meta‐analysis of bioabsorbable versus durable polymer drug‐eluting stents in 20,005 patients with coronary artery disease: an update. Catheterization Cardiovasc Interventions. 2014;83(6):E193-206.
  • Asano T, Serruys PW, Collet C, et al. Angiographic late lumen loss revisited: impact on long-term target lesion revascularization. Eur Heart J. 2018;39(36):3381–3389.
  • Kandzari DE, Mauri L, Koolen JJ, et al. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. Lancet. 2017;390(10105):1843–1852.
  • Teeuwen K, van der Schaaf RJ, Adriaenssens T, et al. randomized multicenter trial investigating angiographic outcomes of hybrid sirolimus-eluting stents with biodegradable polymer compared with everolimus-eluting stents with durable polymer in chronic total occlusions: the PRISON IV trial. JACC Cardiovasc Interv. 2017;10(2):133–143.
  • de Filho L, Da Forte A, Sumita M, et al. Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease. Clinics. 2011;66(6):985–989.
  • Adam Z, Turley A, Mason JM, et al. The SSTARS (steroids and stents against re-stenosis) trial: different stent alloys and the use of peri-procedural oral corticosteroids to prevent in-segment restenosis after percutaneous coronary intervention. Int J Cardiol. 2016;216:1–8.
  • Stone GW, Teirstein PS, Meredith IT, et al. a prospective, randomized evaluation of a novel everolimus-eluting coronary stent: the platinum (a prospective, randomized, multicenter trial to assess an everolimus-eluting coronary stent system [PROMUS element] for the treatment of up to two de novo coronary artery lesions) trial. J Am Coll Cardiol. 2011;57(16):1700–1708.
  • Kelly CR, Teirstein PS, Meredith IT, et al. Long-term safety and efficacy of platinum chromium everolimus-eluting stents in coronary artery disease 5-year results from the PLATINUM trial. JACC Cardiovasc Interv. 2017;10(23):2392–2400.
  • Fajadet J, Neumann F-J, Hildick-Smith D, et al. Twelve-month results of a prospective, multicentre trial to assess the everolimus-eluting coronary stent system (PROMUS Element): the PLATINUM PLUS all-comers randomised trial. EuroIntervention. 2017;12(13):1595–1604.
  • Cassese S, Ndrepepa G, Byrne R, et al. Outcomes of patients treated with durable polymer platinum-chromium everolimus-eluting stents: a meta-analysis of randomised trials. EuroIntervention. 2017;13(8):986–993.
  • Siminiak T, Link R, Woloszyn M, et al. The effect of stent coating on stent deliverability: direct randomised comparison of drug eluting and bare metal stents using the same stent platform. Kardiol Pol. 2012;70(10):998–1002.
  • Valgimigli M, Sabaté M, Kaiser C, et al. Effects of cobalt-chromium everolimus eluting stents or bare metal stent on fatal and non-fatal cardiovascular events: patient level meta-analysis. BMJ. 2014;349.
  • Palmerini T, Benedetto U, Biondi-Zoccai G, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65(23):2496–2507.
  • Tahara S, Bezerra HG, Kyono H, et al. Impact of acute gain on clinical outcomes of patients treated with sirolimus-eluting stent. Circ J. 2011;75(9):2113–2119.
  • Mauri L, Orav EJ, Kuntz RE. Late loss in lumen diameter and binary restenosis for drug-eluting stent comparison. Circulation. 2005;111(25):3435–3442.
  • Kastrati A. Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation. 2006;113(19):2293–2300.
  • Mauri L, Orav JE, O’Malley JA, et al. Relationship of late loss in lumen diameter to coronary restenosis in sirolimus-eluting stents. Circulation. 2005;111(3):321–327.
  • Mauri L, Orav EJ, Candia SC, et al. Robustness of late lumen loss in discriminating drug-eluting stents across variable observational and randomized trials. Circulation. 2005;112(18):2833–2839.
  • Moreno R, Fernandez C, Sanchez-Recalde A, et al. Clinical impact of in-stent late loss after drug-eluting coronary stent implantation. Eur Heart J. 2007;28(13):1583–1591.
  • Vlachojannis GJ, Smits PC, Hofma SH, et al. Biodegradable polymer biolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with coronary artery disease: final 5-year report from the compare ii trial (abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent). JACC Cardiovasc Interv. 2017;10(12):1215–1221.
  • van der Heijden LC, Kok MM, Lowik MM, et al. Three-year safety and efficacy of treating all-comers with newer-generation Resolute Integrity or PROMUS Element stents in the randomised DUTCH PEERS (TWENTE II) trial. EuroIntervention. 2017;12(17):2128–2131.
  • Jensen LO, Maeng M, Raungaard B, et al. Two-year outcome after biodegradable polymer sirolimus- and biolimus-eluting coronary stents (from the randomised SORT OUT VII trial). EuroIntervention. 2018;13(13):1587–1590.
  • Jakobsen L, Christiansen EH, Maeng M, et al. Final five-year outcomes after implantation of biodegradable polymer-coated biolimus-eluting stents versus durable polymer-coated sirolimus-eluting stents. EuroIntervention. 2017;13(11):1336–1344.
  • Raungaard B, Christiansen EH, Botker HE, et al. Comparison of durable-polymer zotarolimus-eluting and biodegradable-polymer biolimus-eluting coronary stents in patients with coronary artery disease: 3-year clinical outcomes in the randomized SORT OUT VI trial. JACC Cardiovasc Interv. 2017;10(3):255–264.
  • Serruys PW, Farooq V, Kalesan B, et al. Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (limus eluted from a durable versus erodable stent coating) randomized, noninferiority trial. JACC Cardiovasc Interv. 2013;6(8):777–789.
  • Kufner S, Byrne RA, Valeskini M, et al. Five-year outcomes from a trial of three limus-eluting stents with different polymer coatings in patients with coronary artery disease: final results from the ISAR-TEST 4 randomised trial. EuroIntervention. 2016;11(12):1372–1379.
  • de Winter RJ, Katagiri Y, Asano T, et al. A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial. Lancet. 2018;391(10119):431–440.
  • Cassese S, Ndrepepa G, Byrne RA, et al. Outcomes of patients treated with ultrathin-strut biodegradable polymer sirolimus-eluting stents versus fluoropolymer-based everolimus-eluting stents: a meta-analysis of randomised trials. EuroIntervention. 2018;14(2):224–231.
  • Katagiri Y, Serruys PW, Asano T, et al. How does the failure of Absorb apply to the other bioresorbable scaffolds?: expert review of first-in-man and pivotal trials. EuroIntervention. EuroIntervention. 2018. DOI: 10.4244/EIJ-D-18-00607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.