7,087
Views
66
CrossRef citations to date
0
Altmetric
Review

Localization strategies for robotic endoscopic capsules: a review

, , , , , , , & show all
Pages 381-403 | Received 17 Jan 2019, Accepted 12 Apr 2019, Published online: 06 May 2019

References

  • References International-Agency-for-Research-on-Cancer. Global Health Observatory (GHO) data, NCD mortality and morbidity [Internet]. Available from: http://www.who.int/gho/ncd/mortality_morbidity/en/
  • International-Agency-for-Research-on-Cancer. Estimated Incidence, Mortality and Prevalence Worldwide in 2012 [Internet]. Estimated Incidence, Mortality and Prevalence Worldwide in 2012. Available from: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017 Jan;67(1):7–30.
  • Bianchi F, Ciuti G, Koulaouzidis A, et al. An innovative robotic platform for magnetically-driven painless colonoscopy. Ann Transl Med [Internet]. 2017 Nov 16;5(21):421. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690967/
  • Stephen MK, Marc DB. Surgical treatment: evidence-based and problem-oriented. Holzheimer R, Mannick J, editors. Munich: Zuckschwerdt; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6945/
  • Lohsiriwat V. Colonoscopic perforation: incidence, risk factors, management and outcome. World J Gastroenterol [Internet]. 2010 Jan 28;16(4):425–430. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811793/
  • Sliker LJ, Ciuti G. Flexible and capsule endoscopy for screening, diagnosis and treatment. Expert Rev Med Devices [Internet]. 2014 Nov 1;11(6):649–666.
  • Than TD, Alici G, Zhou H, et al. A review of localization systems for robotic endoscopic capsules. IEEE Trans Biomed Eng. 2012;59(9):2387–2399.
  • Mateen H, Basar R, Ahmed AU, et al. Localization of wireless capsule endoscope: a systematic review. IEEE Sens J. 2017;17(5):1197–1206.
  • Sliker L, Ciuti G, Rentschler M, et al. Magnetically driven medical devices: a review. Expert Rev Med Devices. 2015;12(6):737–752.
  • Li J, Barjuei ES, Ciuti G, et al. Magnetically-driven medical robots: an analytical magnetic model for endoscopic capsules design. J Magn Magn Mater. 2018;452:278–287.
  • Baker DG. No Title. In: Wiley J, Sons I, editors. Health and safety issues with exposure limits. New York, NY, USA: John Wiley & Sons; 2016. p. 282.
  • Hu C, Meng MQ, Mandal M Efficient magnetic localization and orientation technique for capsule endoscopy. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada. 2005. p. 628–633.
  • Seleznyova K, Strugatsky M, Kliava J. Modelling the magnetic dipole. Eur J Phys, Eur Phys Soc. 2016;37(2):025203 (1–14).
  • Moré JJ. The Levenberg-Marquardt algorithm: implementation and theory BT - numerical analysis. Watson GA, editor. Berlin, Heidelberg: Springer Berlin Heidelberg; 1978. p. 105–116.
  • Hu C, Meng MQH, Mandal M Efficient linear algorithm for magnetic localization and orientation in capsule endoscopy. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China. 2005. p. 7143–7146.
  • Wang X, Meng MQH, Hu C A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY. 2006. p. 2522–2525.
  • Hu C, Yang W, Chen D, et al. An improved magnetic localization and orientation algorithm for wireless capsule endoscope. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada. 2008. p. 2055–2058.
  • Yang W, Hu C, Meng MQH, et al. A Six-Dimensional Magnetic Localization Algorithm for a Rectangular Magnet Objective Based on a Particle Swarm Optimizer. IEEE Trans Magn. 2009;45(8):3092–3099.
  • Zhang P, Li J, Hao Y, et al. The role of computed tomography data in the design of a robotic magnetically-guided endoscopic platform. Adv Robot [Internet]. 2018;1864:1–14.
  • Hu C, Li M, Song S, et al. 3-axis magnetic sensor array for wirelessly tracking magnet position and orientation. IEEE Sens J. 2010;10(5):903–913.
  • Song S, Li B, Qiao W, et al. 6-D magnetic localization and orientation method for an annular magnet based on a closed-form analytical model. IEEE Trans Magn. 2014;50(9):1–11.
  • Hu C, Ren Y, You X, et al. Locating Intra-Body Capsule Object by Three-Magnet Sensing System. IEEE Sens J. 2016;16(13):5167–5176.
  • Plotkin A, Paperno E. 3-D magnetic tracking of a single subminiature coil with a large 2-D array of uniaxial transmitters. IEEE Trans Magn. 2003;39(5):3295–3297.
  • Plotkin A, Kucher V, Horen Y, et al. A new calibration procedure for magnetic tracking systems. IEEE Trans Magn. 2008;44(11):4525–4528.
  • Nagaoka T, Uchiyama A. Development of a small wireless position sensor for medical capsule devices. Conf Proc IEEE Eng Med Biol Soc [Internet]. 2004;3:2137–2140. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17272146
  • Islam MN, Fleming AJ A novel and compatible sensing coil for a capsule in Wireless Capsule Endoscopy for real time localization. In: IEEE SENSORS 2014 Proceedings, Valencia, Spain. 2014. p. 1607–1610.
  • Shamsudhin N, Zverev VI, Keller H, et al. Magnetically guided capsule endoscopy. Med Phys [Internet]. 2017 Aug 1;44(8):e91–111.
  • Ciuti G, Valdastri P, Menciassi A, et al. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica [Internet]. 2009 Oct 26;28(2):199–207. Available from: https://www.cambridge.org/core/article/robotic-magnetic-steering-and-locomotion-of-capsule-endoscope-for-diagnostic-and-surgical-endoluminal-procedures/449A971DC411EFD68F0658C763C13754
  • Arezzo A, Menciassi A, Valdastri P, et al. Experimental assessment of a novel robotically-driven endoscopic capsule compared to traditional colonoscopy. Dig Liver Dis [Internet]. 2013;45(8):657–662.
  • Salerno M, Ciuti G, Lucarini G, et al. A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing. Meas Sci Technol [Internet]. 2012;23(1):15701. Available from: http://stacks.iop.org/0957-0233/23/i=1/a=015701
  • Salerno M, Mulana F, Rizzo R, et al. Magnetic and inertial sensor fusion for the localization of endoluminal diagnostic devices. Int J Comput Assist Radiol Surgery (CARS). 2012;7:229–235.
  • Di Natali C, Beccani M, Valdastri P. Real-time pose detection for magnetic medical devices. IEEE Trans Magn. 2013;49(7):3524–3527.
  • Di Natali C, Beccani M, Simaan N, et al. Jacobian-based iterative method for magnetic localization in robotic capsule endoscopy. IEEE Trans Robot. 2016;32(2):327–338.
  • Sliker LJ, Ciuti G, Rentschler ME, et al. Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribol Int [Internet]. 2016;102:472–484.
  • Son D, Yim S, Sitti M. A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of hall-effect sensors. IEEE ASME Trans Mechatron. 2016 Apr;21(2):708–716.
  • Turan M, Almalioglu Y, Konukoglu E, et al. A deep learning based 6 degree-of-freedom localization method for endoscopic capsule robots. 2017. Available from: http://arxiv.org/abs/1705.05435
  • Taddese AZ, Slawinski PR, Pirotta M, et al. Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes. Int J Rob Res. 2018;37:890–911.
  • Aoki I, Uchiyama A, Arai K, et al. Detecting system of position and posture of capsule medical device. US Application; US20050216231A1, 2004.
  • Graumann R Cable-free endoscopy method and system for determining in vivo position and orientation of an endoscopy capsule. US Application; US20050187479A1, 2003.
  • Hashi S, Yabukami S, Kanetaka H, et al. Numerical study on the improvement of detection accuracy for a wireless motion capture system. IEEE Trans Magn. 2009;45(6):2736–2739.
  • Hashi S, Yabukami S, Kanetaka H, et al. Wireless magnetic position-sensing system using optimized pickup coils for higher accuracy. IEEE Trans Magn. 2011;47(10):3542–3545.
  • Mahoney AW, Cowan DL, Miller KM, et al. Control of untethered magnetically actuated tools using a rotating permanent magnet in any position. In: 2012 IEEE International Conference on Robotics and Automation, Guangzhou, China. 2012. p. 3375–3380.
  • Mahoney AW, Abbott JJ Control of untethered magnetically actuated tools with localization uncertainty using a rotating permanent magnet. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy. 2012. p. 1632–1637.
  • Popek KM, Mahoney AW, Abbott JJ Localization method for a magnetic capsule endoscope propelled by a rotating magnetic dipole field. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany. 2013. p. 5348–5353.
  • Popek KM, Hermans T, Abbott JJ First demonstration of simultaneous localization and propulsion of a magnetic capsule in a lumen using a single rotating magnet. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands, Singapore. 2017. p. 1154–1160.
  • Popek KM, Schmid T, Abbott JJ. Six-degree-of-freedom localization of an untethered magnetic capsule using a single rotating magnetic dipole. IEEE Robot Autom Lett. 2017;2(1):305–312.
  • Masumoto Y Global positioning system. US Grant; US5210540A, 1991.
  • Kursinski ER, Hajj GA, Schofield JT, et al. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res. 1997;102(D19):23429–23465.
  • Guy C Wireless sensor networks. 2006. p. 63571I–6357–4. DOI:10.1117/12.716964
  • Fischer D, Schreiber R, Levi D, et al. Capsule endoscopy: the localization system. Gastrointest Endosc Clin N Am [Internet]. 2004 Jan 1 [cited 2019 Jan 9];14(1):25–31. Available from: https://www.sciencedirect.com/science/article/pii/S1052515703001430?via%3Dihub
  • Shah T, Aziz SM, Vaithianathan T Development of a tracking algorithm for an In-Vivo RF capsule prototype. In: 2006 International Conference on Electrical and Computer Engineering, Dhaka, Bangledesh. 2006. p. 173–176.
  • Wang L, Hu C, Tian L, et al. A novel radio propagation radiation model for location of the capsule in GI tract. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China. 2009. p. 2332–2337.
  • Sayrafian-Pour K, Yang WB, Hagedorn J, et al. A statistical path loss model for medical implant communication channels. In: 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan. 2009. p. 2995–2999.
  • SEMCAD - Simulation platform for electromagnetic compatibilities, antenna design, dosimetry.
  • Makarov SN, Khan UI, Islam MM, et al. On accuracy of simple FDTD models for the simulation of human body path loss. In: 2011 IEEE Sensors Applications Symposium, Hyatt Regency San Antonio, San Antonio, Texas. 2011. p. 18–23.
  • Chandra R, Johansson AJ, Gustafsson M, et al. A microwave imaging-based technique to localize an in-body rf source for biomedical applications. IEEE Trans Biomed Eng. 2015;62(5):1231–1241.
  • Li S, Geng Y, He J, et al. Analysis of three-dimensional maximum likelihood algorithm for capsule endoscopy localization. In: 2012 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China. 2012. p. 721–725.
  • Peleg S, Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase. IEEE Trans Signal Process. 1991;39(3):749–752.
  • Ye Y, Swar P, Pahlavan K, et al. Accuracy of RSS-based RF localization in multi-capsule endoscopy. Int J Wirel Inf Netw [Internet]. 2012;19(3):229–238.
  • Ye Y, Pahlavan K, Bao G, et al. Comparative performance evaluation of RF localization for wireless capsule endoscopy applications. Int J Wirel Inf Netw [Internet]. 2014;21(3):208–222.
  • Hou J, Zhu Y, Zhang L, et al. Design and implementation of a high resolution localization system for in-vivo capsule endoscopy. In: 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China. 2009. p. 209–214.
  • Zhang L, Zhu Y, Mo T, et al. Design of 3D positioning algorithm based on RFID receiver array for in vivo micro-robot. In: 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China. 2009. p. 749–753.
  • Hekimian-Williams C, Grant B, Liu X, et al. Accurate localization of RFID tags using phase difference. In: 2010 IEEE International Conference on RFID (IEEE RFID 2010), Guangzhou, China. 2010. p. 89–96.
  • Wille A, Broll M, Winter S Phase difference based RFID navigation for medical applications. In: 2011 IEEE International Conference on RFID, Orlando, Florida. 2011. p. 98–105.
  • Khan UI, Pahlavan K, Makarov S Comparison of TOA and RSS based techniques for RF localization inside human tissue. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Massachusetts, USA. 2011. p. 5602–5607.
  • Liu Z, Chen J, Khan U, et al. Wideband characterization of RF propagation for TOA localization of wireless video capsule endoscope inside small intestine. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK. 2013. p. 326–331.
  • Pourhomayoun M, Jin Z, Fowler ML. Accurate localization of in-body medical implants based on spatial sparsity. IEEE Trans Biomed Eng. 2014;61(2):590–597.
  • Nafchi AR, Goh ST, Zekavat SAR. circular arrays and inertial measurement unit for DOA/TOA/TDOA-based endoscopy capsule localization: performance and complexity investigation. IEEE Sens J. 2014;14(11):3791–3799.
  • Goh ST, Zekavat SA. Pahlavan K. DOA-based endoscopy capsule localization and orientation estimation via unscented Kalman filter. IEEE Sens J. 2014;14(11):3819–3829.
  • Pahlavan K, Geng Y, Cave DR, et al. A novel cyber physical system for 3-D imaging of the small intestine in vivo. IEEE Access. 2015;3:2730–2742.
  • Duda K, Zielinski T, Fraczek R, et al. Localization of endoscopic capsule in the GI tract based on MPEG-7 visual descriptors. In: 2007 IEEE International Workshop on Imaging Systems and Techniques, Krakow, Poland. 2007. p. 1–4.
  • Salembier P, Sikora T. No Title. In: Manjunath BS, editor. Introduction to MPEG-7: multimedia content description interface. New York, NY, USA: John Wiley & Sons, Inc; 2002, 214-220.
  • Bao G, Pahlavai K Motion estimation of the endoscopy capsule using region-based Kernel SVM classifier. In: IEEE International Conference on Electro-Information Technology, EIT 2013, Rapid City, SD, USA. 2013. p. 1–5.
  • Brandao P, Mazomenos E, Ciuti G, et al. Fully convolutional neural networks for polyp segmentation in colonoscopy. 2017. p. 101340F–10134–7. DOI:10.1117/12.2254361
  • Aghanouri M, Ghaffari A, Dadashi N Image-based localization of the active wireless capsule endoscope inside the stomach. In: 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, Florida. 2017. p. 13–16.
  • Iakovidis DK, Dimas G, Karargyris A, et al. Robotic validation of visual odometry for wireless capsule endoscopy. In: 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Crete Island, Greece. 2016. p. 83–87.
  • Dimas G, Iakovidis DK, Ciuti G, et al. Visual localization of wireless capsule endoscopes aided by artificial neural networks. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, Greece. 2017. p. 734–738.
  • Hayakawa N, Hosoyamada T, Yoshida S, et al. Numerical simulation of wave fields around the submerged breakwater with sola-surf method. Coast Eng Proceedings; No 26 Proc 26th Conf Coast Eng Copenhagen, Denmark, 1998DO - 109753/icce.v26%p [Internet]. Available from: https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/5652
  • Muja M, Lowe DG Fast approximate nearest neighbors with automatic algorithm configuration. In: The International Conference on Computer Vision Theory and Applications (VISAPP’09), Lisboa, Portugal. 2009.
  • Torr PHS, Zisserman A. MLESAC: A new robust estimator with application to estimating image geometry. Comput Vis Image Underst [Internet]. 2000 Apr 1 [cited 2018 May 11];78(1):138–156. Available from: https://www.sciencedirect.com/science/article/pii/S1077314299908329
  • Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell [Internet]. 2000;22:1330–1334. Available from: https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
  • Kannala J, Brandt SS. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans Pattern Anal Mach Intell. 2006 Aug;28(8):1335–1340.
  • Lowe DG Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece. 1999. p. 1150–1157 vol.2.
  • Iakovidis DK, Dimas G, Karargyris A, et al. deep endoscopic visual measurements. IEEE J Biomed Heal Informatics [Internet]. 2018;PP(c):1–1. Available from: https://ieeexplore.ieee.org/document/8408470/
  • Davidian D Feed-forward neural network. US Grant: NEC Electronics America Inc; US5438646A, 1992.
  • Bao G, Pahlavan K, Mi L. Hybrid localization of microrobotic endoscopic capsule inside small intestine by data fusion of vision and RF sensors. IEEE Sens J. 2015;15(5):2669–2678.
  • Geng Y, Pahlavan K On the accuracy of RF and image processing based hybrid localization for wireless capsule endoscopy. 2015 IEEE Wireless Communications and Networking Conference, WCNC 2015, New Orleans, Louisiana, USA. 2015. 452–457 p.
  • Boese J, Rahn N, Sandkamp B Method for determining the position and orientation of an object, especially of a catheter, from two-dimensional X-ray images. US Application: Siemens AG; US20060285638A1, 2005.
  • Kuth R, Reinschke J, Rockelein R Method for determining the position and orientation of an endoscopy capsule guided through an examination object by using a navigating magnetic field generated by means of a navigation device. US Application; US20070038063A1, 2005.
  • Carpi F, Kastelein N, Talcott M, et al. Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans Biomed Eng. 2011 Feb;58(2):231–234.
  • Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993 Mar;29(3):411–415.
  • Krieger A, Susil RC, Menard C, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng. 2005 Feb;52(2):306–313.
  • Keller H, Juloski A, Kawano H, et al. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron, Rome,Italy. 2012;859–865.
  • Rey JF, Ogata H, Hosoe N, et al. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy. 2010;42(7):541–545.
  • Arshak K, Adepoju F Capsule tracking in the GI tract: a novel microcontroller based solution. In: Proceedings of the 2006 IEEE Sensors Applications Symposium, 2006, Houston, Texas,USA. 2006. p. 186–191.
  • Fluckiger M, Nelson BJ Ultrasound emitter localization in heterogeneous media. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France. 2007. p. 2867–2870.
  • Nagy Z, Fluckiger M, Ergeneman O, et al. A wireless acoustic emitter for passive localization in liquids. In: 2009 IEEE International Conference on Robotics and Automation, kobe, Japan. 2009. p. 2593–2598.
  • Stewart F, Verbeni A, Qiu Y, et al. A prototype therapeutic capsule endoscope for ultrasound-mediated targeted drug delivery. J Med Robot Res [Internet]. 2018 Feb 14;3(2):1840001.