565
Views
30
CrossRef citations to date
0
Altmetric
Device Profile

Magmaris resorbable magnesium scaffold for the treatment of coronary heart disease: overview of its safety and efficacy

, &
Pages 757-769 | Received 29 May 2019, Accepted 24 Jul 2019, Published online: 30 Jul 2019

References

  • Gruntzig A, Schneider HJ. The percutaneous dilatation of chronic coronary stenoses–experiments and morphology. Schweiz Med Wochenschr. 1977;107(44):1588.
  • Serruys PW, Kutryk MJ, Ong AT. Coronary-artery stents. N Engl J Med. 2006;354(5):483–495.
  • Arjomand H, Turi ZG, McCormick D, et al. Percutaneous coronary intervention: historical perspectives, current status, and future directions. Am Heart J. 2003;146(5):787–796.
  • Moliterno DJ. Healing Achilles–sirolimus versus paclitaxel. N Engl J Med. 2005;353(7):724–727.
  • Hill RA, Dundar Y, Bakhai A, et al. Drug-eluting stents: an early systematic review to inform policy. Eur Heart J. 2004;25(11):902–919.
  • McFadden EP, Stabile E, Regar E, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004;364(9444):1519–1521.
  • Tsimikas S. Drug-eluting stents and late adverse clinical outcomes lessons learned, lessons awaited. J Am Coll Cardiol. 2006;47(10):2112–2115.
  • Silber S, Albertsson P, Aviles FF, et al. Guidelines for percutaneous coronary interventions. The task force for percutaneous coronary Interventions of the European society of cardiology. Eur Heart J. 2005;26(8):804–847.
  • Adriaenssens T, Joner M, Godschalk TC, et al. Optical coherence tomography findings in patients with coronary stent thrombosis: a report of the PRESTIGE consortium (prevention of late stent thrombosis by an interdisciplinary global European effort). Circulation. 2017;136(11):1007–1021.
  • Di Mario C, Serruys PW, Silber S, et al. Long-term outcomes after resolute zotarolimus-eluting stent implantation in patients with ST-segment elevation acute myocardial infarction: insights from the RESOLUTE all comers trial and the RESOLUTE global clinical trial program. EuroIntervention. 2016;12(10):1207–1214.
  • Gada H, Kirtane AJ, Newman W, et al. 5-year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents: final results from the SPIRIT III trial (clinical evaluation of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions). JACC Cardiovasc Interventions. 2013;6(12):1263–1266.
  • Stefanini GG, Byrne RA, Windecker S, et al. State of the art: coronary artery stents - past, present and future. EuroIntervention. 2017;13(6):706–716.
  • Wentzel JJ, Whelan DM, van der Giessen WJ, et al. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech. 2000;33(10):1287–1295.
  • Onuma Y, Serruys PWJC. Bioresorbable scaffolds: from basic concept to clinical applications. Boca Raton: CRC Press, Taylor & Francis Group; 2017.
  • Regazzoli D, Leone PP, Colombo A, et al. New generation bioresorbable scaffold technologies: an update on novel devices and clinical results. J Thorac Dis. 2017;9(Suppl 9):S979–s85.
  • Zheng Y. Magnesium alloys as degradable biomaterials. Boca Raton: CRC Press, Taylor & Francis Group; 2015.
  • Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003;89(6):651–656.
  • Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004;17(6):391–395.
  • Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization Cardiovasc Interventions. 2006;68(4):607–617.
  • Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–1875.
  • Wittchow E, Adden N, Riedmuller J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model. EuroIntervention. 2013;8(12):1441–1450.
  • Hermawan H, Dube D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–1697.
  • Schmidt W, Behrens P, Brandt-Wunderlich C, et al. In vitro performance investigation of bioresorbable scaffolds - standard tests for vascular stents and beyond. Cardiovasc Revascularization Med. 2016;17(6):375–383.
  • Campos CM, Muramatsu T, Iqbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013;14(12):24492–24500.
  • Iqbal J, Onuma Y, Ormiston J, et al. Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J. 2014;35(12):765–776.
  • Joner M, Ruppelt P, Zumstein P, et al. Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds. EuroIntervention. 2018;14(9):e1040–e8.
  • Kemp PA, Gardiner SM, March JE, et al. Assessment of the effects of endothelin-1 and magnesium sulphate on regional blood flows in conscious rats, by the coloured microsphere reference technique. Br J Pharmacol. 1999;126(3):621–626.
  • Berthon N, Laurant P, Fellmann D, et al. Effect of magnesium on mRNA expression and production of endothelin-1 in DOCA-salt hypertensive rats. J Cardiovasc Pharmacol. 2003;42(1):24–31.
  • Rukshin V, Azarbal B, Shah PK, et al. Intravenous magnesium in experimental stent thrombosis in swine. Arterioscler Thromb Vasc Biol. 2001;21(9):1544–1549.
  • Rukshin V, Shah PK, Cercek B, et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. Circulation. 2002;105(16):1970–1975.
  • Sternberg K, Gratz M, Koeck K, et al. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. J Biomed Mater Res Part B Appl Biomater. 2012;100(1):41–50.
  • Rapetto C, Leoncini M. Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis. 2017;9(Suppl 9):S903–s13.
  • Waksman R, Zumstein P, Pritsch M, et al. Second-generation magnesium scaffold Magmaris: device design and preclinical evaluation in a porcine coronary artery model. EuroIntervention:. 2017;13(4):440–449.
  • Waksman R, Lipinski MJ, Acampado E, et al. Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus Absorb in a porcine arteriovenous shunt model. Circ cardiovasc Interventions. 2017;10(8). pii: e004762. doi: 10.1161/CIRCINTERVENTIONS.116.004762.
  • Bennett J, Verbeken E, Vanhaverbeke M, et al. In-vivo vascular healing following bifurcation interventions with the Absorb bioresorbable vascular scaffold. Cardiovasc Revascularization Med. 2019. DOI:10.1016/j.carrev.2019.03.006.
  • Lipinski MJ, Acampado E, Cheng Q, et al. Comparison of acute thrombogenicity for magnesium versus stainless steel stents in a porcine arteriovenous shunt model. EuroIntervention. 2019;14(13):1420–1427.
  • Joner M. Oral presentation. San Diego, CA: TCT; 2018.
  • Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 2013;381(9869):836–844.
  • Waksman R, Prati F, Bruining N, et al. Serial observation of drug-eluting absorbable metal scaffold: multi-imaging modality assessment. Circ Cardiovasc Interventions. 2013;6(6):644–653.
  • Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907.
  • Haude M, Erbel R, Erne P, et al. Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. EuroIntervention. 2016;12(2):e160–6.
  • Haude M, Ince H, Kische S, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention. 2017;13(4):432–439.
  • Haude M, Ince H, Kische S, et al. Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III. Catheterization Cardiovasc Interventions. 2018;92(7):E502–e11.
  • Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387(10013):31–39.
  • Haude M, Ince H, Abizaid A, et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J. 2016;37(35):2701–2709.
  • Haude M, Ince H, Tolg R, et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold (DREAMS 2G) in patients with de novo coronary lesions: 3-year clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. EuroIntervention. 2019. DOI:10.4244/EIJ-D-18-01000.
  • Ali ZA, Gao R, Kimura T, et al. Three-year outcomes with the Absorb bioresorbable scaffold: individual-patient-data meta-analysis From the ABSORB randomized trials. Circulation. 2018;137(5):464–479.
  • Verheye S, Wlodarczak A, Montorsi P, et al. Safety and performance of a resorbable magnesium scaffold under real-world conditions: 12-month outcomes of the first 400 patients enrolled in the BIOSOLVE-IV registry. EuroIntervention. 2019. DOI:10.4244/EIJ-D-18-01058.
  • Marynissen T, McCutcheon K, Bennett J. Early collapse causing stenosis in a resorbable magnesium scaffold. Catheterization Cardiovasc Interventions. 2018;92(2):310–312.
  • Fajadet J, Haude M, Joner M, et al. Magmaris preliminary recommendation upon commercial launch: a consensus from the expert panel on 14 april 2016. EuroIntervention. 2016;12(7):828–833.
  • Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2018;39(3):213–260.
  • Scalone G, Brugaletta S, Gomez-Monterrosas O, et al. ST-segment elevation myocardial infarction - ideal scenario for bioresorbable vascular scaffold implantation? Circ J. 2015;79(2):263–270.
  • Alfonso F, Cuesta J, Bastante T, et al. Bioresorbable vascular scaffolds in patients with acute myocardial infarction: a new step forward to optimized reperfusion? J Thorac Dis. 2016;8(6):E417–23.
  • Picard F, de Hemptinne Q, Avram R, et al. Bioresorbable vascular scaffold during ST-elevation myocardial infarction: a systematic review. Can J Cardiol. 2017;33(4):515–524.
  • Sabate M, Windecker S, Iniguez A, et al. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J. 2016;37(3):229–240.
  • Cassese S, Katagiri Y, Byrne RA, et al. Angiographic and clinical outcomes of STEMI patients treated with bioresorbable or metallic everolimus-eluting stents. A pooled analysis of individual patient data from 2 randomized trials. EuroIntervention. 2019. DOI:10.4244/EIJ-D-18-01080.
  • Byrne RA, Alfonso F, Schneider S, et al. Prospective, randomized trial of bioresorbable scaffolds vs. everolimus-eluting stents in patients undergoing coronary stenting for myocardial infarction: the intracoronary scaffold assessment a randomized evaluation of Absorb in myocardial infarction (ISAR-Absorb MI) trial. Eur Heart J. 2019;40(2):167–176.
  • Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376(24):2319–2328.
  • Wlodarczak A, Lanocha M, Jastrzebski A, et al. Early outcome of magnesium bioresorbable scaffold implantation in acute coronary syndrome-the initial report from the Magmaris-ACS registry. Catheterization Cardiovasc Interventions. 2019;93(5):E287–e92.
  • de Hemptinne Q, Picard F, Briki R, et al. Drug-eluting resorbable magnesium scaffold implantation in ST-segment elevation myocardial infarction: a pilot study. J Invasive Cardiol. 2018;30(6):202–206.
  • Ielasi A, Cerrato E, Geraci S, et al. Sirolimus-eluting magnesium resorbable scaffold implantation in patients with acute myocardial infarction. Cardiology. 2019;142(2):93–96.
  • Brugaletta S, Cequier A, Alfonso F, et al. MAGnesium-based bioresorbable scaffold and vasomotor function in patients with acute ST segment elevation myocardial infarction: the MAGSTEMI trial: rationale and design. Catheterization Cardiovasc Interventions. 2019;93(1):64–70.
  • Toth G, Haude M, Lootz D, et al. Resorbable magnesium scaffold in coronary bifurcations - report of in vitro experiments. Cardiovasc Revascularization Med. 2018. DOI:10.1016/j.carrev.2018.11.023
  • Bennett J, Vanhaverbeke M, Vanden Driessche N, et al. The drug-eluting resorbable magnesium vascular scaffold in complex coronary bifurcations: insights from an in vivo multimodality imaging study. EuroIntervention. 2018;13(17):2036-2046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.