281
Views
12
CrossRef citations to date
0
Altmetric
Review

Baroreflex activation therapy systems: current status and future prospects

, &
Pages 1025-1033 | Received 15 Sep 2019, Accepted 21 Nov 2019, Published online: 27 Nov 2019

References

  • Perlini S, Grassi G. Hypertension-related target organ damage: it is a continuum? J Hypertens. 2013;31:1083–1085.
  • Cuspidi C, Ambrosioni E, Mancia G, et al. Role of echocardiogrphy and carotid ultrasonography in stratifying risk in patients with essential hypertension: the assessment of prognostic risk observational survey. J Hypertens. 2002;20:1307–1314.
  • De Simone G, Gottdiener JS, Chinali M, et al. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular health study. Eur Heart J. 2008;29:741–747.
  • Santos M, Shah AM. Alterations in cardiac structure and function in hypertension. Curr Hypertens Rep. 2014;16:428.
  • Schillaci G, Verdecchia P, Porcellati C, et al. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35:580–586.
  • Iriarte MM, Perez Olea J, Sagastagoitia D, et al. Congestive heart failure due to hypertensive ventricular diastolic dysfunction. Am J Cardiol. 1995;76:43D–47D.
  • Nadruz W, Shah AM, Solomon SD. Diastolic dysfunction and hypertension. Med Clin North Am. 2017;101:7–17.
  • Grassi G, Giannattasio C, Seravalle G, et al. Cardiogenic reflexes and left ventricular hypertrophy. Eur Heart J. 1990;11:G95–G99.
  • Grassi G, Seravalle G, Quarti Trevano F, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53:205–209.
  • Sakhuja A, Textor SC, Taler SJ. Uncontrolled hypertension by the 2014 evidence-based guideline: results from NHANES 2011–1212. J Hypertens. 2015;33:644–651.
  • Carcel C, Neal B, Oparil S, et al. Clinical characteristics, antihypertensive medication use and blood pressure control among patients with treatment-resistan hypertension: the Survey of PatIents with treatment ResIstant hyperTension study. J Hypertens. 2019;37:2216–2224.
  • Mancia G, Zambon A, Soranna D, et al. Factors involved in the discontinuation of antihypertensive drug therapy: an analysis from real life data. J Hypertens. 2014;32:1708–1715.
  • Tomaszewski M, White C, Patel P, et al. High rates of non adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry urine analysis. Heart. 2014;100:855–861.
  • Calhoun DA, Schiffrin EL, Flack JM. Resistant hypertension: an update. Am J Hypertens. 2019;32:1–3.
  • Hajduczok G, Chapleau MW, Ferlic RJ, et al. Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch-activated channels. J Clin Invest. 1994;94:2392–2396.
  • Chapleau MW, Li Z, Meyrelles SS, et al. Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci. 2001;940:1–19.
  • Mancia G, Mark AL. Arterial baroreflexes in humans. In: Shepherd JT, Abboud FM, editors. Handbook of physiology, section 2: the cardiovascular system. Bethesda, MD: American Physiological Society; 1983. p. 755–793.
  • Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–1814.
  • Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–990.
  • Seravalle G, Cattaneo BM, Giannattasio C, et al. RAA system and cardiovascular control in normal subjects, hypertensives and patients with congestive heart failure. J Hum Hypertens. 1993;7:s13–s18.
  • Aschrafi A, Berndt A, Kowalak JA, et al. Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine B-hydroxylase mRNAs and enhances norepinephrine synthesis in primary sympathetic neurons. J Neurochem. 2019. DOI:10.1111/jnc.14821
  • Dampney RA, Fontes M, Hirooka Y, et al. Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002;29:467–472.
  • Masi S, Uliana M, Virdis A. Angiotensin II and vascular damage in hypertension. Role of oxidative stress and sympathetic activation. Vasc Pharmacol. 2019;115:13–17.
  • Seravalle G, Quarti Trevano F, Dell’Oro R, et al. Sympathetic baroreflex and metabolic abnormalities in the optimal, normal and high-normal blood pressure state. J Hypertens. 2015;33:1411–1417.
  • Anderson EA, Sinkey CA, Lawton WJ, et al. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177–183.
  • Floras JS, Hara K. Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. J Hypertens. 1993;11:647–655.
  • Grassi G, Cattaneo BM, Seravalle G, et al. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.
  • Grassi G, Pisano A, Bolignano D, et al. Sympathetic nerve traffic activation in essential hypertension and its correlates: systematic reviews and meta-analyses. Hypertension. 2018;72:483–491.
  • Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens. 1989;11(suppl 1):75–89.
  • Grassi G, Seravalle G, Mancia G. Left ventricular hypertrophy and sympathetic activity. Adv Exp Med Biol. 1997;432:173–179.
  • Greenwood JP, Scott EM, Stoker JB, et al. Hypertensive left ventricular hypertrophy: relation to peripheral sympathetic drive. J Am Coll Cardiol. 2001;38:1711–1717.
  • Schlaich MP, Kaye DM, Lambert E, et al. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560–565.
  • Chalothorsn D, Zhang H, Clayton JA, et al. Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol. 2005;289:H947–H959.
  • Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 2014;126:267–274.
  • Masi S, Georgiopoulos G, Chiriacò M, et al. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovasc Res. 2019. DOI:10.1093/cvr/cvz096
  • Grassi G, Quarti Trevano F, Seravalle G, et al. Early sympathetic activation in the initial stages of chronic renal failure. Hypertension. 2011;57:846–851.
  • Grassi G, Seravalle G, Ghiadoni L, et al. Sympathetic nerve traffic and asymmetric dimethylarginine in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:2620–2627.
  • Kaur J, Young BE, Fadel PJ. Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. Int J Mol Sci. 2017;18. DOI:10.3390/ijms18081682.
  • Seravalle G, Mancia G, Grassi G. Role of sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High Blood Press Cardiovasc Prev. 2014;21:89–105.
  • Sandler D, Winbeck K, Klingelhofer J, et al. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology. 2001;57:833–838.
  • Rouleau JL, Packer M, Moye L, et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol. 1994;24:583–591.
  • Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92:3206–3211.
  • Brunner-La Rocca HP, Esler MD, Jennings GL, et al. Effects of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 2001;22:1136–1143.
  • Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–563.
  • Vaz M, Jennings G, Turner A, et al. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423–3429.
  • Landsberg L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). J Hypertens. 2001;19:523–528.
  • Grassi G, Dell’Oro R, Quarti Trevano F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia. 2005;48:1359–1365.
  • Huggett RJ, Scott EM, Gilbey SG, et al. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108:3097–3101.
  • Narkiewicz K, van de Borne PJ, Cooley RL, et al. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98:772–776.
  • Grassi G, Seravalle G, Quarti Trevano F, et al. Reinforcement of the adrenergic overdrive in the metabolic syndrome complicated by obstructive sleep apnea. J Hypertens. 2010;28:1313–1320.
  • Carlsten A, Folkow B, Grimby G, et al. Cardiovascular effects of direct stimulation of the carotid sinus nerve in man. Acta Physiol Scand. 1958;44:138–145.
  • Bilgutay AM, Lillehei CW. Surgical treatment of hypertension with reference to baropacing. Am J Cardiol. 1966;17:663–667.
  • Schwartz SI, Griffith LS, Neistadt A, et al. Chronic carotid sinus nerve stimulation in the treatment of essential hypertension. Am J Surg. 1967;114:5–15.
  • Schmidli J, Savolainen H, Irwin E, et al. A completely new treatment for hypertension? J Hypertens. 2004;22:s252–s253.
  • Tordoir JHM, Scheffers I, Schmidli J, et al. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multicenter feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc. 2007;33:414–421.
  • Scheffers I, Kroon AA, Schmidli J, et al. Novel baroreflex activation therapy in resistant hypertension: results of European Multicenter Feasibility Study. J Am Coll Cardiol. 2010;56:1254–1258.
  • Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–626.
  • Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: result from the double-blind, randomized,placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–773.
  • De Leeuw PW, Alnima T, Lovett E, et al. Bilateral or unilateral stimulation for baroreflex activation therapy. Hypertension. 2015;65:187–192.
  • Bakris G, Nadim M, Haller H, et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6:152–158.
  • Hoppe UC, Brandt MC, Watcher R, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacamaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6:270–276.
  • Wallbach M, Lehnig LY, Schroer C, et al. Effects of Baroreflex activation therapy on ambulatory blood pressure in patients with resistant hypertension. Hypertension. 2016;67:701–709.
  • Beige J, Jentzsch T, Wendt R, et al. Blood pressure after blinded, randomized withdrawal, and resumption of baroreceptor-activating therapy. J Hypertens. 2017;35:1496–1501.
  • Spiering W, Williams B, van der Heyden J, et al.; CALM-FIM-EUR investigators. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet. 2017;390:2655–2661.
  • Peter DA, Alemu Y, Xenos M, et al. Fluid structure interaction with contact surface methodology for evaluation of endovascular carotid implants for drug-resistant hypertension treatment. J Biomech Eng. 2012;134:41001.
  • Wallbach M, Lehnig L-Y, Schroer C, et al. Effects of baroreflex activation therapy on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Hypertens. 2015;33:181–186.
  • Wallbach M, Zurbig P, Dihazi H, et al. Kideny protective effects of baroreflex activation therapy in patients with resistant hypertension. J Clin Hypertens. 2018;20:1519–1526.
  • Wallbach M, Lehnig L-Y, Helms H-J, et al. Long-term effects of baroreflex activation therapy on glucose metabolism. Acta Diabetol. 2015;52:829–835.
  • Gronda E, Seravalle G, Brambilla G, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac hemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail. 2014;16:977–983.
  • Zile MR, Abraham WT, Lindenfeld J, et al. First granted example of novel FDA trial design under expedited access pathway for premarket approval: beAT-HF. Am Heart J. 2018;4:139–150.
  • Wallbach M, Lehnig L-Y, Schroer C, et al. Impact of baroreflex activation therapy on renal function-a pilot study. Am J Nephrol. 2014;40:371–380.
  • May M, Ahrens J, Menne J, et al. Limited acute influences of electrical baroreceptor activation on insulin sensitivity and glucose delivery: a randomized, double-blind, crossover clinical study. Diabetes. 2014;63:2833–2837.
  • Wallbach M, Bohning E, Lehnig L-Y, et al. Safety profile of baroreflex activation therapy (NEO) in patients with resistant hypertension. J Hypertens. 2018;36:1762–1769.
  • Dell’Oro R, Gronda E, Seravalle G, et al. Restoration of normal sympathetic neural function in heart failure following baroreflex activation therapy: final 43-month study report. J Hypertens. 2017;35:2532–2536.
  • Seravalle G, Colombo M, Perego P, et al. Long-term sympathoinhibitory effects of surgically induced weight loss in severe obese patients. Hypertension. 2014;64:431–437.
  • Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–1281.
  • Davies JE, Manisty CH, Petraco BAJ, et al. First in man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162:189–192.
  • Zannad F, De Ferrari GM, Tuinenburg AE, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NeECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36:425–433.
  • Premchand RK, Sharma K, Mittal S, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20:808–816.
  • Hauptman PJ, Schwartz PJ, Gold MR, et al. Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J. 2012;163:954–962.
  • Nabutovsky Y, Florio J, Morgan K, et al. Lead design and initial applications of a new lead for long-term endovascular vagal stimulation. Pacing Clin Electrophysiol. 2007;30(suppl 1):s215–s218.
  • Tse HF, Turner S, Sanders P, et al. Thoracic Spinal Cord Stimulation for HEArt Failure as a Restorative Treatment (SCS HEART study): first-in-man experience. Heart Rhythm. 2015;12:588–595.
  • Determining the feasibility of spinal cord neuromodulation for the treatment of chronic heart failure (DEFEAT-HF). Available from: htpps://clinicaltrials.gov/ct2/show/NCT01112579
  • Ponikowski P, Javaheri S, Michalkiewicz D, et al. Transvenous phrenic nerve stimulation for the treatment of central sleep apnoea in heart failure. Eur Heart J. 2012;33:889–894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.