885
Views
15
CrossRef citations to date
0
Altmetric
Review

Artificial intelligence: improving the efficiency of cardiovascular imaging

, , , , &
Pages 565-577 | Received 30 Dec 2019, Accepted 01 Jun 2020, Published online: 16 Jun 2020

References

  • Russell S , Norvig P. Artificial intelligence: A modern approach. Englewood Cliffs, NJ: Prentice Hall Press; 2009.
  • AM TURING . I.—computing machinery and intelligence. Mind. 1950;LIX:433–460.
  • CB Insights Research . Healthcare remains the hottest AI category for deals. 2017. Available from: https://www.cbinsights.com/research/artificial-intelligence-healthcare-startups-investors/.
  • De Mauro A . A formal definition of Big Data based on its essential features. Lib Rev. 2016;65:122–135.
  • Petersen SE , Matthews PM , Bamberg F , et al. Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. J Cardiovasc Magn Reson. 2013;15:46.
  • Fonseca CG , Backhaus M , Bluemke DA , et al. The cardiac atlas project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics. 2011;27(16):2288–2295. .
  • Deo RC . Machine learning in medicine. Circulation. 2015;132(20):1920–1930.
  • Dey D , Slomka PJ , Leeson P , et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–1335.
  • Johnson KW , Torres Soto J , Glicksberg BS , et al. Artificial Intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668. .
  • Litjens G , Ciompi F , Wolterink JM , et al. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging. 2019;12:1549–1565.
  • Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–2410.
  • Esteva A , Kuprel B , Novoa RA , et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–118.
  • Neskovic AN , Skinner H , Price S , et al. Focus cardiac ultrasound core curriculum and core syllabus of the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2018;19:475–481.
  • Alsharqi M , Woodward WJ , Mumith JA , et al. Artificial intelligence and echocardiography. Echo Res Pract. 2018;5:R115–r125.
  • Gao X , Li W , Loomes M , et al. A fused deep learning architecture for viewpoint classification of echocardiography. Inf Fusion. 2016;36:103–113.
  • Hayes C , Daniel D , Lu X , et al. Fully automatic planning of the long-axis views of the heart. J Cardiovasc Magn Reson. 2013;15:O54.
  • Blansit K , Retson T , Masutani E , et al. Deep learning–based prescription of cardiac MRI planes. Radiol. 2019;1:e180069.
  • Lorch B , Vaillant G , Baumgartner C , et al. Automated detection of motion artefacts in MR imaging using decision forests. J Med Eng. 2017;2017:9.
  • Hauptmann A , Arridge S , Lucka F , et al. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magn Reson Med. 2019;81:1143–1156.
  • Tsao J , Boesiger P , Pruessmann KP . k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50:1031–1042.
  • Jung H , Ye JC , Kim EY . Improved k-t BLAST and k-t SENSE using FOCUSS. Phys Med Biol. 2007;52:3201–3226.
  • Qin C , Schlemper J , Caballero J , et al. Convolutional recurrent neural networks for dynamic mr image reconstruction. IEEE Trans Med Imaging. 2019;38:280–290.
  • Tavakoli V , Amini AA . A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vision Image Understanding. 2013;117:966–989.
  • Belous G , Busch A , Rowlands D Segmentation of the left ventricle from ultrasound using random forest with active shape model. 2013. Proceedings of the 2013 International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Malaysia. 2013:315–319.
  • Leclerc S , Grenier T , Espinosa F , et al. A fully automatic and multi-structural segmentation of the left ventricle and the myocardium on highly heterogeneous 2D echocardiographic data. 2017 IEEE International Ultrasonics Symposium, Sep 2017, Washington, DC, United States.
  • Leclerc S , Smistad E , Pedrosa J , et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging. 2019;38:2198–2210.
  • Dong S , Luo G , Wang K , et al. VoxelAtlasGAN: 3D left ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel discrimination. 2018 International Conference on Medical Image Computing & Computer Assisted Intervention, Sep 2018, Granada, Spain.
  • Dong S , Luo G , Sun G , et al. A left ventricular segmentation method on 3D echocardiography using deep learning and snake. Proceedings of the 2016 Computing in Cardiology Conference, Vancouver, BC, Canada. 2016:473–476.
  • Comaniciu D , Zhou X , Krishnan S . Robust real-time myocardial border tracking for echocardiography: an information fusion approach. IEEE Trans Med Imaging. 2004;23:849–860.
  • Suinesiaputra A , Bluemke DA , Cowan BR , et al. Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J Cardiovasc Magn Reson. 2015;17:63.
  • Bernard O , Lalande A , Zotti C , et al. Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging. 2018;37:2514–2525.
  • Shelhamer E , Long J , Darrell T . Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2016;39:1.
  • Savioli N , Silva Vieira M , Lamata P , et al. Automated segmentation on the entire cardiac cycle using a deep learning work - flow. 2018 International Conference on Social Network Analysis, Management and Security, Oct 2018, Valencia, Spain.
  • Yue Q , Luo X , Ye Q , et al. Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors. 2019 International Conference on Medical Image Computing and Computer-Asssisted Intervention, Shenzhen, China. 2019:559–567.
  • Bai W , Sinclair M , Tarroni G , et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20:65.
  • Oktay O , Ferrante E , Kamnitsas K , et al. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging. 2018;37:384–395.
  • Sander J , De Vos B , Wolterink J , et al. Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI. 2019 SPIE Medical Imaging Conference, Feb 2019, San Diego, CA, United States. .
  • Zheng Y , Barbu A , Georgescu B , et al. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging. 2008;27:1668–1681.
  • Xu Z , Wu Z , Feng J . CFUN: combining faster R-CNN and U-net network for efficient whole heart segmentation. 2018. [cited 2020 Jun 9]. https://arxiv.org/abs/1812.04914
  • Singh G , Al’Aref S , Maliakal G , et al. Deep learning based automatic segmentation of cardiac computed tomography. J Am Coll Cardiol. 2019;73:1643.
  • Zreik M , Leiner T , De Vos B , et al. Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks. Proceedings of the 2016 IEEE International Symposium on Biomedical Imaging, Prague, Czech Republic. 2016:40–43.
  • Bruns S , Wolterink J , van Hamersvelt R , et al. Improving myocardium segmentation in cardiac CT angiography using spectral information: 2019 SPIE Medical Imaging Conference, Feb 2019, San Diego, CA, USA.
  • Wolterink JM , Leiner T , Išgum I . Graph convolutional networks for coronary artery segmentation in cardiac CT angiography. Cham: Springer International Publishing; 2019.
  • Gülsün M , Funka-Lea G , Sharma P , et al. Coronary centerline extraction via optimal flow paths and CNN path pruning. Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece. 2016:317–325.
  • Guo Z , Bai J , Lu Y , et al. DeepCenterline: a multi-task fully convolutional network for centerline extraction. 2019 Information Processing in Medical Imaging Conference, Jun 2019, Hong Kong.
  • Grbic S , Ionasec R , Vitanovski D , et al. Complete valvular heart apparatus model from 4D cardiac CT. Med Image Anal. 2012;16:1003–1014.
  • Cannesson M , Tanabe M , Suffoletto MS , et al. A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction. J Am Coll Cardiol. 2007;49:217–226.
  • Madani A , Ong JR , Tibrewal A , et al. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. Npj Digital Med. 2018;1:59.
  • Chykeyuk K , Clifton DA , Noble JA . Feature extraction and wall motion classification of 2D stress echocardiography with relevance vector machines. Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging,Chicago, IL, United States. 2011;677–680.
  • Sanchez-Martinez S , Duchateau N , Erdei T , et al. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017;35:70–82.
  • Knackstedt C , Bekkers SCAM , Schummers G , et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol. 2015;66(13):1456–1466. .
  • Zhou SK , Guo F , Park J , et al. A probabilistic, hierarchical, and discriminant framework for rapid and accurate detection of deformable anatomic structure. Proceedings of the 2007 IEEE International Conference on Computer Vision, Rio de Janiero, Brazil. 2007:1–8.
  • Moghaddasi H , Nourian S . Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med. 2016;73:47–55.
  • Lang RM , Badano LP , Mor-Avi V , et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. .
  • Tsang W , Salgo IS , Medvedofsky D , et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC. Cardiovascular Imaging. 2016;9(7):769–782. .
  • Narang A , Mor-Avi V , Prado A , et al. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging. 2019;20(5):541–549. .
  • Medvedofsky D , Mor-Avi V , Amzulescu M , et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018;19(1):47–58. .
  • Medvedofsky D , Mor-Avi V , Byku I , et al. Three-dimensional echocardiographic automated quantification of left heart chamber volumes using an adaptive analytics algorithm: feasibility and impact of image quality in nonselected patients. J Am Soc Echocardiography. 2017;30(9):879–885. .
  • Volpato V , Mor‐Avi V , Narang A , et al. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiography. 2019;36(2):312–319. .
  • Genovese D , Rashedi N , Weinert L , et al. Machine Learning–based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance. J Am Soc Echocardiogr. 2019;32(8):969–977. .
  • Ngo TA , Lu Z , Carneiro G . Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 2017;35:159–171.
  • Marino M , Veronesi F , Corsi C . Fully automated assessment of left ventricular volumes and mass from cardiac magnetic resonance images. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:1079–1082.
  • Suinesiaputra A , Sanghvi MM , Aung N , et al. Fully-automated left ventricular mass and volume MRI analysis in the UK Biobank population cohort: evaluation of initial results. Int J Cardiovasc Imaging. 2018;34(2):281–291. .
  • Avendi MR , Kheradvar A , Jafarkhani H . Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn Reson Med. 2017;78(6):2439–2448.
  • Petitjean C , Zuluaga MA , Bai W , et al. Right ventricle segmentation from cardiac MRI: A collation study. Med Image Anal. 2015;19(1):187–202. .
  • Zabihollahy F , White JA , Ukwatta E . Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Med Phys. 2019;46(4):1740–1751.
  • Fahmy AS , Neisius U , Chan RH , et al. Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study. Radiology. 2019;294(1):56–60.
  • Yang G , Zhuang X , Khan H , et al. Fully automatic segmentation and objective assessment of atrial scars for long-standing persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Med Phys. 2018;45(4):1562–1576. .
  • Tao Q , Ipek EG , Shahzad R , et al. van der Geest RJ. Fully automatic segmentation of left atrium and pulmonary veins in late gadolinium-enhanced MRI: towards objective atrial scar assessment. J Magn Reson Imaging. 2016;44(2):346–354.
  • Fahmy AS , El-Rewaidy H , Nezafat M , et al. Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks. J Cardiovasc Magn Reson. 2019;21(1):7.
  • Budoff MJ , Shaw LJ , Liu ST , et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–1870. .
  • Isgum I , Prokop M , Niemeijer M , et al. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging. 2012;31(12):2322–2334.
  • Lessmann N , Ginneken B , Zreik M , et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging. 2017;37(2):615–625.
  • Wolterink JM , Leiner T , Takx RAP , et al. Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging. 2015;34(9):1867–1878.
  • Martin SS , van Assen M , Rapaka S , et al. Evaluation of a deep learning–based automated CT coronary artery calcium scoring algorithm. JACC Cardiovasc Imaging. 2020;13(2 Pt 1):524–526.
  • Wolterink JM , Leiner T , de Vos BD , et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal. 2016;34:123–136.
  • Kelm BM , Mittal S , Zheng Y , et al. Detection, grading and classification of coronary stenoses in computed tomography angiography. Med Image Comput Comput Assist Interv. 2011;14(Pt 3):25–32. .
  • Zreik M , van Hamersvelt RW , Wolterink JM , et al. A Recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging. 2019;38(7):1588–1598.
  • Itu L , Rapaka S , Passerini T , et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol. 2016;121(1):42–52.
  • Coenen A , Kim Y-H , Kruk M , et al. Diagnostic Accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve. Circ Cardiovasc Imaging. 2018;11(6):e007217.
  • Zreik M , van Hamersvelt RW , Khalili N , et al. Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography. IEEE Trans Med Imaging. 2020;39(5):1545-1557.
  • Mazurek T , Zhang L , Zalewski A , et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–2466. .
  • Cheng VY , Dey D , Tamarappoo B , et al. Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging. 2010;3(4):352–360. .
  • Commandeur F , Goeller M , Betancur J , et al. Deep Learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans Med Imaging. 2018;37(8):1835–1846.
  • Commandeur F , Goeller M , Razipour A , et al. Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study. Radiol. 2019;1:e190045.
  • Taylor AG , Mielke C , Mongan J . Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS Med. 2018;15(11):e1002697–e1002697.
  • Litjens G , Sánchez CI , Timofeeva N , et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6(1):26286. .
  • Madani A , Arnaout R , Mofrad M , et al. Fast and accurate view classification of echocardiograms using deep learning. Npj Digital Med. 2018;1(1):6.
  • Zhang J , Gajjala S , Agrawal P , et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138(16):1623–1635. .
  • Narula S , Shameer K , Salem Omar AM , et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–2295.
  • Lancaster MC , Salem Omar AM , Narula S , et al. Phenotypic clustering of left ventricular diastolic function parameters. JACC Cardiovasc Imaging. 2019;12:1149.
  • Ambale-Venkatesh B , Yang X , Wu CO , et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017;121(9):1092–1101. .
  • Kotu LP , Engan K , Borhani R , et al. Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Artif Intell Med. 2015;64(3):205–215. .
  • Bello GA , Dawes TJW , Duan J , et al. Deep-learning cardiac motion analysis for human survival prediction. Nature Mach Intell. 2019;1(2):95–104. .
  • Dey D , Gaur S , Ovrehus KA , et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol. 2018;28(6):2655–2664. .
  • Motwani M , Dey D , Berman DS , et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–507..
  • Commandeur F , Slomka PJ , Goeller M , et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res. 2019. DOI:10.1093/cvr/cvz321.
  • Arsanjani R , Xu Y , Hayes SW , et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54(2):221–228. .
  • Arsanjani R , Xu Y , Dey D , et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20(4):553–562.
  • Betancur J , Commandeur F , Motlagh M , et al. Deep Learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018;11:1654–1663.
  • Arsanjani R , Dey D , Khachatryan T , et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22:877–884.
  • Betancur J , Otaki Y , Motwani M , et al. Prognostic value of Combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11:1000–1009.
  • Kolossvary M , Kellermayer M , Merkely B , et al. Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. 2018;33:26–34.
  • Gillies RJ , Kinahan PE , Hricak H . Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–577.
  • Parmar C , Grossmann P , Bussink J , et al. Machine Learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.
  • Engan K , Eftestol T , Orn S , et al. Exploratory data analysis of image texture and statistical features on myocardium and infarction areas in cardiac magnetic resonance images. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5728–5731.
  • Kotu LP , Engan K , Skretting K , et al. Probability mapping of scarred myocardium using texture and intensity features in CMR images. Biomed Eng Online. 2013;12:91.
  • Larroza A , Materka A , Lopez-Lereu MP , et al. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. Eur J Radiol. 2017;92:78–83.
  • Larroza A , Lopez-Lereu MP , Monmeneu JV , et al. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med Phys. 2018;45:1471–1480.
  • Schofield R , Ganeshan B , Kozor R , et al. CMR myocardial texture analysis tracks different etiologies of left ventricular hypertrophy. J Cardiovasc Magn Reson. 2016;18:O82.
  • Thornhill RE , Cocker M , Dwivedi G , et al. Quantitative texture features as objective metrics of enhancement heterogeneity in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:P351.
  • Cheng S , Fang M , Cui C , et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol. 2018;28:4615–4624.
  • Baeßler B , Schaarschmidt F , Dick A , et al. Mapping tissue inhomogeneity in acute myocarditis: a novel analytical approach to quantitative myocardial edema imaging by T2-mapping. J Cardiovasc Magn Reson. 2015;17:115.
  • Baessler B , Luecke C , Lurz J , et al. Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology. 2018;289:357–365.
  • Maurovich-Horvat P , Ferencik M , Voros S , et al. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11:390–402.
  • Hell MM , Motwani M , Otaki Y , et al. Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. Eur Heart J Cardiovasc Imaging. 2017;18:1331–1339.
  • Kolossváry M , Karády J , Szilveszter B , et al. Radiomic Features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging. 2017;10:e006843–e006843.
  • Kolossváry M , Park J , Bang J-I , et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20(11):1250–1258.
  • Kolossváry M , Karády J , Kikuchi Y , et al. Radiomics versus visual and histogram-based assessment to identify atheromatous lesions at coronary CT angiography: an ex vivo study. Radiology. 2019;293:89–96.
  • Nicol ED , Norgaard BL , Blanke P , et al. The future of cardiovascular computed tomography: advanced analytics and clinical insights. JACC Cardiovasc Imaging. 2019;12:1058–1072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.