519
Views
30
CrossRef citations to date
0
Altmetric
Special Report

Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer

ORCID Icon, &
Pages 751-758 | Received 14 Apr 2020, Accepted 08 Jul 2020, Published online: 27 Jul 2020

References

  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:181–202.
  • Shao K, Ding W, Wang F, et al. Emulsion PCR: A high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS ONE. 2011;6:e24910.
  • Ng EW, Shima DT, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5:123–132.
  • Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997;4:809–816.
  • Hassanzadeh L, Chen S, Veedu RN. Radiolabeling of nucleic acid aptamers for highly sensitive disease-specific molecular imaging. Pharmaceuticals (Basel). 2018;11. DOI:10.3390/ph11040106
  • Filippi L, Chiaravalloti A, Schillaci O, et al. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices. 2020. DOI:10.1080/17434440.2020.1741348.
  • Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287:820–825.
  • Long SB, Long MB, White RR, et al. Crystal structure of an RNA aptamer bound to thrombin. RNA. 2008;14:2504–2512.
  • Gelinas AD, Davies DR, Janjic N. Embracing proteins: structural themes in aptamer-protein complexes. Curr Opin Struct Biol. 2016;36:122–132.
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510.
  • Zhuo Z, Yu Y, Wang M, et al. Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci. 2017;18:2142.
  • Sefah K, Shangguan D, Xiong X, et al. Development of DNA aptamers using Cell-SELEX. Nat Protoc. 2010;5:1169–1185.
  • Wang Y, Luo Y, Bing T, et al. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS ONE. 2014;9:e100243.
  • Ni S, Yao H, Wang L, et al. Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci. 2017;18:1683.
  • Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5:e15004.
  • Kimoto M, Yamashige R, Matsunaga K, et al. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol. 2013;31:453–457.
  • Carothers JM, Goler JA, Kapoor Y, et al. Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res. 2010;38:2736–2747.
  • Filippi L, Valentini FB, Gossetti B, et al. Intraoperative gamma probe detection of head and neck paragangliomas with 111In-pentetreotide: a pilot study. Tumori. 2005;91:173–176.
  • Chattopadhyay S, Barua L, Saha Das S, et al. Pharmaceutical grade sodium [99mTc] pertechnetate from low specific activity 99Mo using an automated 99Mo/99mTc-TCMautosolex generator. J Radioanal Nucl Chem. 2014;302:781–790.
  • Correa CR, de Barros AL, Ferreira Cde A, et al. Aptamers directly radiolabeled with technetium-99m as a potential agent capable of identifying carcinoembryonic antigen (CEA) in tumor cells T84. Bioorg Med Chem Lett. 2014;24:1998–2001.
  • Khalid U, Vi C, Henri J, et al. Radiolabelled aptamers for theranostic treatment of cancer. Pharmaceuticals (Basel). 2018. DOI:10.3390/ph12010002.
  • Da Rocha Gomes S, Miguel J, Azéma L, et al. (99m)Tc-MAG3-aptamer for imaging human tumors associated with high level of matrix metalloprotease-9. Bioconjug Chem. 2012;23:2192–2200.
  • Kryza D, Debordeaux F, Azéma L, et al. Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix MetalloProtease-9 in Melanomas. PLoS One. 2016;11:e0149387.
  • Varmira K, Hosseinimehr SJ, Noaparast Z, et al. An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers. J Drug Target. 2014;22:116–122.
  • Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012. DOI:10.1155/2012/743193
  • Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.
  • Cole EL, Stewart MN, Littich R, et al. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem. 2014;14:875–900.
  • Jacobson O, Yan X, Niu G, et al. PET imaging of tenascin-C with a radiolabeled single-stranded DNA aptamer. J Nucl Med. 2015;56:616–621.
  • Kim HJ, Park JY, Lee TS, et al. PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS One. 2019;14:e0211047.
  • Cheng S, Jacobson O, Zhu G, et al. PET imaging of EGFR expression using an 18F-labeled RNA aptamer. Eur J Nucl Med Mol Imaging. 2019;46:948–956.
  • Chan H, Moseley C, Zhang L, et al. Correlation of DOTATOC uptake and pathologic grade in neuroendocrine tumors. Pancreas. 2019;48:948–952.
  • Filippi L, Schillaci O, Cianni R, et al. Yttrium-90 resin microspheres and their use in the treatment of intrahepatic cholangiocarcinoma. Future Oncol. 2018;14:809–818.
  • Gijs M, Becker G. Biodistribution of novel 68Ga-radiolabelled HER2 aptamers in mice. J Nucl Med Radiat Ther. 2016. DOI:10.4172/2155-9619.1000300
  • Lee J, Peña MM, Nose Y, et al. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002;277:4380–4387.
  • Righi S, Ugolini M, Bottoni G, et al. Biokinetic and dosimetric aspects of 64CuCl2 in human prostate cancer: possible theranostic implications. EJNMMI Res. 2018. DOI:10.1186/s13550-018-0373-9.
  • Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. Drug Des Devel Ther. 2018;12:3235–3245.
  • Li J, Zheng H, Bates PJ, et al. Aptamer imaging with Cu-64 labeled AS1411: preliminary assessment in lung cancer. Nucl Med Biol. 2014;41:179–185.
  • Song MG, Youn H, Lee YS, et al. 64Cu-HSA-aptamer as a targeting agent recognizes HER2 expressing cancer cell in vivo. J Nucl Med. 2012;53:1734.
  • Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–19.
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9:1145–1162.
  • Cheng W, Nie J, Gao N, et al. A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater. 2017;27:1704135.
  • González-Ruíz A, Ferro-Flores G, Jiménez-Mancilla N, et al. In vitro and in vivo synergistic effect of radiotherapy and plasmonic photothermal therapy on the viability of cancer cells using 177Lu–Au-NLS-RGD-Aptamer nanoparticles under laser irradiation. J Radioanal Nucl Chem. 2018;318:1913–1921.
  • Deri MA, Zeglis BM, Francesconi LC, et al. PET imaging with ⁸⁹Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14.
  • Fletcher NL, Houston ZH, Simpson JD, et al. Designed multifunctional polymeric nanomedicines: long-term biodistribution and tumour accumulation of aptamer-targeted nanomaterials. Chem Commun (Camb). 2018;54:11538–11541.
  • Zhang M, Wang Z, Wang S, et al. The first application of 68Ga labeled ssDNA aptamer Sgc8 in colorectal patients. J Nucl Med. 2018;59(S1):53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.