253
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent advances in imaging technologies for assessment of retinal diseases

, , , ORCID Icon, &
Pages 1095-1108 | Received 15 Jan 2020, Accepted 25 Aug 2020, Published online: 15 Sep 2020

References

  • Keane PA, Sadda SR. Imaging chorioretinal vascular disease. Eye. 2010;24:422–427.
  • Keane PA, Sadda SR. Retinal Imaging in the Twenty-First Century State of the Art and Future Directions. Ophthalmol. 2014;121(12):2489–2500.
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Sci. 1991;254(5035):p. 1178–1181. DOI:10.1126/science.1957169.
  • Fercher AF, Drexler W, Hitzenberger CK, et al. Optical coherence tomography—principles and applications. Rep Prog Phys. 2003:239–303
  • Ko F, Muthy ZA, Gallacher J, et al. Association of retinal nerve fiber layer thinning with current and future cognitive decline: a study using optical coherence tomography. JAMA Neurol. 2018;75(10):p. 1198–1205. DOI:10.1001/jamaneurol.2018.1578.•• This paper highlights the use of big data in finding novel insights, such as retinal nerve fibre layer thinning correlation with cognitive decline, and therefore a potential biomarker for neurodegeneration.
  • De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:p. 1342–1350.•• This seminal paper, showed that novel deep learning architecture from industrial partners could be used on public healthcare datasets, and the algorithms were non inferior to clinical specialists in diagnosing retinal pathology based on OCT.
  • Yang WH, Zheng B, Wu MN, et al. An Evaluation System of Fundus Photograph-Based Intelligent Diagnostic Technology for Diabetic Retinopathy and Applicability for Research. Diabetes Ther. epub ahead of print 2019;10:1811–1822.doi: 10.1007/s13300-019-0652-0
  • Bastawrous A, Giardini ME, Bolster NM, et al. Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol. 2016;134(2):p. 151–158. DOI:10.1001/jamaophthalmol.2015.4625.
  • Kim Y, Chao DL. Comparison of smartphone ophthalmoscopy vs conventional direct ophthalmoscopy as a teaching tool for medical students: the COSMOS study. Clin Ophthalmol. 2018;13:p. 391–401.
  • Gunasekera CD, Thomas P. High-resolution direct ophthalmoscopy with an unmodified iPhone X. JAMA Ophthalmol. 2018;29:p. 1–2.
  • Novotny HR, Alvis DR. A method of photographing fluorescence in circulating blood in the human retina. Circ. 1961;24:p. 82–86.
  • Pawley J. Handbook of Biological Confocal Microscopy. New York, NY: Springer; 2010.
  • Goh JKH, Cheung CY, Sim SS, et al. Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10(2):p. 282–294.
  • Yaghoubi M, Moradi-Lakeh M, Mokhtari-Payam M, et al. Confocal scan laser ophthalmoscope for diagnosing glaucoma: a systematic review and meta-analysis. Asia Pac J Ophthalmol (Phila). 2015;4(1):p. 32–9. DOI:10.1097/APO.0000000000000085
  • Ahn BS, Kee C. Ability of a confocal scanning laser ophthalmoscope (TopSS) to detect early glaucomatous visual field defect. Br J Ophthalmol. 2000;84(8):p. 852–5.
  • Falavarjani KG, Wang K, Khadamy J, et al. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curr Ophthalmol. 2016;28(2):p. 57–60.
  • Spaide R. Fundus autofluorescence and age-related macular degeneration. Ophthalmol. 2003;110(2):p. 392–9.
  • Oishi A, Hidaka J, Yoshimura N. Quantification of the image obtained with a wide-field scanning ophthalmoscope. Invest Ophthalmol Vis Sci. 2014;55(4):p. 2424–31.
  • Tsui I, Franco-Cardenas V, Hubschman J, et al. Pediatric retinal conditions imaged by ultra wide field fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2013;44(1):p. 59–67.
  • Nagiel A, Lalane R, Sadda S, et al. Ultra-Widefield Fundus Imaging: a review of clinical applications and future trends.Retina. 2016 [2016];36(4):p. 660–78. DOI:10.1097/IAE.0000000000000937.•• This article highlights ultra-widefield imaging’s uses in obtaining high resolution photographic images of the retinal periphery, but also its functional assessment by means of FFA, ICGA and OCT, which provides invaluable information for the diagnosis and follow-up.
  • Oishi M, Oishi A, Ogino K, et al. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies. Invest Ophthalmol Vis Sci. 2014;55(6):p. 3572–7. DOI:10.1167/iovs.14-13912.
  • Hirano T, K S, Toriyama Y, et al. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol. 2018;102(9):p. 1199–1203.
  • Croft D, van Hemert J, Wykoff C, et al. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. Ophthalmic Surg Lasers Imaging Retina. 2014;45(4):p. 312–7. DOI:10.3928/23258160-20140709-07.
  • Sagong M, van Hemert J, Olmos de Koo L, et al. Assessment of accuracy and precision of quantification of ultra-widefield images. Ophthalmol. 2015;122(4):864–866.
  • Inoue M, Yanagawa A, Yamane S, et al. Wide-field fundus imaging using the Optos Optomap and a disposable eyelid speculum. JAMA Ophthalmol. 2013;131(2):p. 226.
  • Talks SJ, Manjunath V, Steel DH, et al. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol. 2015;99(12):p. 1606–9.•• This paper provides evidence in favour of the clinical superiority of wide-field retinal imaging in detecting new retinal vessels amongst treatment naive diabetic patients. This was achieved by incorporating CSLO into existing technologies.
  • Friberg T, Gupta A, Yu J, et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. Ophthalmic Surg Lasers Imaging. 2008;39(4):p. 304–11. DOI:10.3928/15428877-20080701-06.
  • Oliver S, Schwartz S. Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol. 2010;25(1–2):p. 27–33.
  • Prasad P, Oliver S, Coffee R, et al. Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology. 2010;117(4):p. 780–4.
  • Seidensticker F, Neubauer A, Wasfy T, et al. Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients. Clin Ophthalmol. 2011;5:p. 1667–71.
  • Pang C, Shah V, Sarraf D, et al. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol. 2014;158(2):p. 362–371.
  • Tan C, Heussen F, Sadda S. Peripheral autofluorescence and clinical findings in neovascular and non-neovascular age-related macular degeneration. Ophthalmology. 2013;120(6):p. 1271–7.
  • Reznicek L, Seidensticker F, Stumpf C, et al. Systematic analysis of wide-field fundus autofluorescence (FAF) imaging in posterior uveitis. Curr Eye Res. 2014;39(2):p. 164–71. DOI:10.3109/02713683.2013.834938.
  • Theodoropoulou S, Ainsworth S, Blaikie A. Ultra-wide field imaging of retinopathy of prematurity (ROP) using Optomap-200TX. BMJ Case Rep. 2013;2013(oct08 1):bcr2013200734-bcr2013200734.
  • Patel C, Fung T, Muqit M, et al. Non-contact ultra-widefield retinal imaging and fundus fluorescein angiography of an infant with incontinentia pigmenti without sedation in an ophthalmic office setting. J AAPOS. 2013;17(3):p. 309–11.
  • Fung T, Muqit M, Mordant D, et al. Noncontact high-resolution ultra-wide-field oral fluorescein angiography in premature infants with retinopathy of prematurity. JAMA Ophthalmol. 2014;132(1):p. 108–10.
  • Kang K, Wessel M, Tong J, et al. Ultra-widefield imaging for the management of pediatric retinal diseases. J Pediatr Ophthalmol Strabismus. 2013;50(5):p. 282–8.
  • Kashani A, Learned D, Nudleman E, et al. High prevalence of peripheral retinal vascular anomalies in family members of patients with familial exudative vitreoretinopathy. Ophthalmol. 2014;121(1):p. 262–268.
  • Wenick A, Barañano D. Evaluation and management of pediatric rhegmatogenous retinal detachment. Saudi J Ophthalmol. 2012;26(3):p. 255–63.
  • Afshar A, Oldenburg C, Stewart J. A novel hybrid fixed and mobile ultra-widefield imaging program for diabetic teleretinopathy screening. Ophthalmol Retina. 2019;3:p. 576–579. DOI:10.1016/j.oret.2019.03.007
  • Porter J. Adaptive Optics for Vision Science. New Jersey: Wiley-Interscience; 2006. p. 63–65.
  • Hofer H, Artal P, Singer B, et al. Dynamics of the eye’s wave aberration. 2001;18(3):p. 497–506.
  • Saleh M. Adaptive optics for Ophthalmology. Fr J Ophthalmol. 2016;39:4.
  • Porter J. Adaptive optics for vision science. New Jersey: Wiley-Interscience; 2006. p. 33.
  • Porter J. Adaptive Optics for Vision Science. New Jersey: Wiley-Interscience; 2006. p. 6–7.
  • Gill JS, Moosajee M, Dubis AM. Cellular imaging of inherited retinal diseases using adaptive optics. Eye. 2019;33:p. 1683–1698.•• This recent review provides a summary of AO principles and its integration into multiple retinal imagining modalities.
  • Zhang Y, Cense B, Rha J, et al. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt Express. 2006;14(10):p. 4380–94. DOI:10.1364/OE.14.004380.
  • Gale MJ, Harman GA, Chen J, et al. Repeatability of adaptive optics automated cone measurements in subjects with retinitis pigmentosa and novel metrics for assessment of image quality. Transl Vis Sci Technol. 2019;8(3):p. 17.
  • Zhang B, Li N, Kang J, et al. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update. Int J Ophthalmol. 2017;10(11):p. 1751–1758.
  • Felberer F, Rechenmacher M, Haindl R, et al. Imaging of retinal vasculature using adaptive optics SLO/OCT. Biomed Opt Express. 2015;6(4):p. 1407–18.
  • Delori F, Staurenghi G, Arend O, et al. In vivo measurement of lipofuscin in Stargardt’s disease–Fundus flavimaculatus. Invest Ophthalmol Vis Sci. 1995;36(11):p. 2327–31.
  • Sparrow J, Gregory-Roberts E, Yamamoto K, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res. 2012;31(2):p. 121–35. DOI:10.1016/j.preteyeres.2011.12.001.
  • Sparrow J, Cai B, Jang Y, et al. A2E, a fluorophore of RPE lipofuscin, can destabilize membrane. Adv Exp Med Biol. 2006;572:p. 63–68.
  • Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. J Photochem Photobiol B. 2001;64:p. 144–161.
  • Zhou J, Kim S, Westlund B, et al. Complement activation by bisretinod constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci. 2009;50:p. 1392–1399.
  • Sparrow J, Nakanishi K, Parish C. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci. 2000;41(7):p. 1981–9.
  • Birnbach C, Järveläinen M, Possin D, et al. Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmol. 1994;101(7):p. 1211–9.
  • Burke T, Duncker T, Woods R, et al. Quantitative fundus autofluorescence in recessive Stargardt disease. Invest Ophthalmol Vis Sci. 2014;55(5):p. 2841–52. DOI:10.1167/iovs.13-13624.
  • Delori F, Goger D, Dorey C. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci. 2001;42(8):p. 1855–66.
  • Schmitz-Valckenberg S, Holz FG, Bird AC, et al. Fundus autofluorescence imaging: review and perspectives. Retina. 2008;28:p. 385–409.
  • Greenberg J, Duncker T, Woods R, et al. Quantitative fundus autofluorescence in healthy eyes. Invest Ophthalmol Vis Sci. 2013;54(8):p. 5684–93.
  • Delori F, Greenberg J, Woods R, et al. Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci. 2011;52(13):p. 9379–90. DOI:10.1167/iovs.11-8319.• This paper summarised the use of quantitative fundus autofluorescence (qAT) for serial reviews of the retinal pigment epithelial  condition at different time points, hence serving as a valuable tool for evaluating disease progression and response to treatment.
  • Reiter G, Told R, Baratsits M, et al. Repeatability and reliability of quantitative fundus autofluorescence imaging in patients with early and intermediate age-related macular degeneration. Acta Ophthalmol. 2019;97(4):p. e526–e532. DOI:10.1111/aos.13987.
  • Orellana-Rios J, Yokoyama S, Agee J, et al. Quantitative fundus autofluorescence in non-neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retina. 2018;49(10):S34–S42.
  • Sparrow J, Duncker T, Woods R, et al. Quantitative fundus autofluorescence in best vitelliform macular dystrophy: RPE Lipofuscin is not increased in non-lesion areas of retina. Adv Exp Med Biol. 2016;854:p. 285–90.
  • Duncker T, Tsang S, Woods R, et al. Quantitative fundus autofluorescence and optical coherence tomography in PRPH2/RDS- and ABCA4-associated disease exhibiting phenotypic overlap. Invest Ophthalmol Vis Sci. 2015;56(5):p. 3159–70. DOI:10.1167/iovs.14-16343.
  • Zhang HF, Maslo K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24(7):p. 848–851.
  • Liu W, Zhang HF. Photoacoustic imaging of the eye: A mini review. Photoacoustics. 2016;4(3):p. 112–123.
  • Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):p. 37–61.
  • Olafsdottir OB, Hardarson SH, Gottfredsdottir MS, et al. Retinal oximetry in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52(9):6409–6413.
  • Eliasdottir TS, Bragason D, Hardarson SH, et al. Venous oxygen saturation is reduced and variable in central retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2014;253(10):p. 1409.
  • Hardarson SH, Stefánsson E. Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol. 2011;96(4):p. 560–563.
  • Landrum JT, Bone RA, Kilburn MD. The macular pigment: a possible role in protection from age-related macular degeneration. Adv Pharmacol. 1996;38:p. 537–556.
  • Liu T, H L, Song W, et al. Fundus camera guided photoacoustic ophthalmoscopy. Curr Eye Res. 2013;38(12):1229–1234.
  • Wei Q, Liu T, Jiao S, et al. Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy. J Mod Opt. 2011;58(21):p. 1997–2001.
  • Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt lett. 1988;13(3):p. 186–188.
  • Izatt JA, Choma MA. Theory of optical coherence tomography. In: Drexler W, Fujimoto JG, editors. Optical coherence tomography: technology and applications. Switzerland: Springer International Publishing; 2008. p. 47–72.
  • Ohno-Matsui K, Akiba M, Moriyama M, et al. Imaging retrobulbar subarachnoid space around optic nerve by swept-source optical coherence tomography in eyes with pathologic myopia. Invest Ophthalmol Vis Sci. 2011;52:p. 9644–9650.
  • Mrejen S, Spaide R. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58:p. 387–429.
  • Yasuno Y, Hong Y, Makita S, et al. In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography. Opt Express. 2007;15:p. 6121–6139. DOI:10.1364/OE.15.006121
  • Ohno-Matsui K, Akiba M, Ishibashi T, et al. Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:p. 7290–7298.
  • Spaide R, Koizumi H, Pozzoni M. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):p. 496–500.
  • Waldstein S, Faatz H, Szimacsek M, et al. Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography. Eye (Lond). 2015;29(3):p. 409–15. DOI:10.1038/eye.2014.319.
  • Esmaeelpour M, Povazay B, Hermann B, et al. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci. 2010;51(10):p. 5260–6. DOI:10.1167/iovs.10-5196.
  • Park H, Shin H, Park C. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014;157(3):p. 550–7.
  • Lim L, Cheung G, Lee S. Comparison of spectral domain and swept-source optical coherence tomography in pathological myopia. Eye (Lond). 2014;28(4):p. 488–91.
  • Adhi M, Liu J, Qavi A, et al. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol. 2014;157(6):p. 1272–1281. DOI:10.1016/j.ajo.2014.02.034.
  • Copete S, Flores-Moreno I, Montero J, et al. Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol. 2014;98(3):p. 334–8.
  • Matsuo Y, Sakamoto T, Yamashita T, et al. Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci. 2013;54(12):p. 7630–6.
  • Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):p. 5536–40. DOI:10.1167/iovs.10-6811.
  • Zafar S, Siddiqui M, Shahzad R. Comparison of choroidal thickness measurements between spectral-domain OCT and swept-source OCT in normal and diseased eyes. Clin Ophthalmol. 2016;10:p. 2271–2276.
  • Tan C, Ngo W, Cheong K. Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol. 2015;99(3):p. 354–8.
  • Akkaya S. Spectrum of pachychoroid disease. Int Ophthalmol. 2018;38(5):p. 2239–2246.
  • Cicinelli MV, Rabiolo A, Sacconi R, et al. Optical coherence tomography angiography in dry age-related macular degeneration. Surv Ophthalmol. 2018;63(2):p. 236–244. DOI:10.1016/j.survophthal.2017.06.005.
  • Wang JC, Miller JB. For mass eye and ear special issue: optical coherence tomography angiography: review of current technical aspects and applications in chorioretinal disease. Semin Ophthalmol. 2019;34:211–217. [ epub ahead of print].• A good review on the nascent technology of OCTA, and it’s place in ophthalmology.
  • Moussa M, Mahmoud L, Saad Bessa A, et al. Grading of macular perfusion in retinal vein occlusion using en-face swept-source optical coherence tomography angiography: a retrospective observational case series. BMC Ophthalmol. 2019;19(1):127. DOI:10.1186/s12886-019-1134-x.
  • Coscas GJ, Lupidi M, Coscas F, et al. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina. 2015;35(11):p. 2219–2228.
  • de Carlo TE, Bonini Filho MA, Chin AT, et al. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmol. 2015;122(6):p. 1228–1238. DOI:10.1016/j.ophtha.2015.01.029.
  • Gong J, Yu S, Gong Y, et al. The Diagnostic accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography. J Ophthalmol. 2016;1–8. [ epub].
  • Inoue M, Jung JJ, Balaratnasingam C, et al. A comparison between optical coherence tomography angiography and fluorescein angiography for the imaging of Type 1 neovascularization. Investig ophthalmol vis sci. 2016;57(9):p. 314–323. DOI:10.1167/iovs.15-18900.
  • Querques G, Corvi F, Querques L, et al. Optical coherence tomography angiography of choroidal neovascularization secondary to pathological myopia. Dev Ophthalmol. 2016;56:p. 101–106.
  • Faatz H, Farecki ML, Rothaus K, et al. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: evaluation of a new quantitative method. Eye. 2019;33:1466–1471. [epub]. doi: 10.1038/s41433-019-0429-8
  • Carnevali A, Sacconi R, Querques L, et al. Natural history of treatment-naïve quiescent choroidal neovascularization in age-related macular degeneration using OCT angiography. Ophthalmol Retina. 2018;2(9):p. 922–930. DOI:10.1016/j.oret.2018.02.002.
  • Choi W, Waheed N, Moult E, et al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy. Retina. 2017;37(1):p. 11–21. DOI:10.1097/IAE.0000000000001250.
  • Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):p. 695–702. DOI:10.1007/s00592-017-0996-8.
  • Nesper PL, Roberts PK, Onishi AK, et al. Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58(6):p. 307–315. DOI:10.1167/iovs.17-21787.
  • Conti FF, Qin LV, Rodrigues EB, et al. Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. Br J Ophthalmol. 2019;103:p. 452–456.
  • Invernizzi A, Cozzi M, Staurenghi G. Optical coherence tomography and optical coherence tomography angiography in uveitis: a review. Clin Exp Ophthalmol. 2018;47:p. 357–371.
  • Eastline M, Munk MR, Wolf S, et al. Repeatability of wide-field optical coherence tomography angiography in normal retina. Trans Vision Sci Technol. 2019;8(3):p. 6. DOI:10.1167/tvst.8.3.6.
  • Salz D, de Carlo T, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol. 2016;134(6):p. 644–50. DOI:10.1001/jamaophthalmol.2016.0600.
  • Kakihara S, Hirano T, Iesato Y, et al. Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion. Jpn J Ophthalmol. 2018;62(3):p. 274–279.
  • Pellegrini M, Cozzi M, Staurenghi G, et al. Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders. PLOS ONE. 2019;14:e0214892. [ epub].
  • Russell JF, Shi Y, Hinkle JW, et al. Longitudinal wide field swept source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol Retina. 2018;3(4):p. 350–361. DOI:10.1016/j.oret.2018.11.008.
  • Russell JF, Jr HW F, Sridhara J, et al. Distribution of diabetic neovascularization on ultra-widefield fluorescein angiography and on simulated widefield OCT angiography. Am J Ophthalmol. 2019;207:p. 110–120.
  • Dayani PN, Maldonado R, Farsiu S, et al. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina. 2009;29(10):p. 1457–68.
  • Carrasco-Zevallos OM, Viehland C, Keller B, et al. Review of intraoperative optical coherence tomography: technology and applications. Biomed Opt Express. 2017;8(3):p. 1607–1637. DOI:10.1364/BOE.8.001607.
  • Li X, Chudoba G, Ko T, et al. Imaging needle for optical coherence tomography. Opt Lett. 2000;25(20):1520–1522.
  • Ehlers JP, Dupps WJ, Kaiser PK, et al. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am J Ophthalmol. 2014;158(5):p. 999–1007. DOI:10.1016/j.ajo.2014.07.034.
  • Ehlers JP, Modi YS, Pecen PE, et al. The discover study 3-year results: feasibility and usefulness of microscope-integrated intraoperative OCT during ophthalmic surgery. Ophthalmology. 2018;125(7):p. 1014–1027. DOI:10.1016/j.ophtha.2017.12.037.
  • Ung C, Miller JB. Intraoperative optical coherence tomography in vitreoretinal surgery. Semin Ophthalmol. 2019;34:312–316. [ epub ahead of print].
  • de Carvalho JE, Verbraak FD, Aalders MC, et al. Recent advances in ophthalmic molecular imaging. Surv Ophthalmol. 2014;59(4):393-413.• This article discusses various molecular imaging techniques and their applications in ophthalmology at present and in the future.
  • Farkas RH, Grosskreutz CL. Apoptosis, neuroprotection, and retinal ganglion cell death: an overview. Int Ophthalmol Clin. 2001;41(1):p. 111–130.
  • Cordeiro MF, Normando EM, Cardoso MJ, et al. Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain. 2017;140(6):p. 1757–1767. DOI:10.1093/brain/awx088.
  • Yang E, Al-Mugheiry TS, Normando E, et al. Real-time imaging of retinal Cell Apoptosis by Confocal Scanning Laser Ophthalmoscopy and Its Role in Glaucoma. Front. Neurol. 2018;15(9):338.
  • Barnett EM, Zhang X, Maxwell D, et al. Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proc Natl Acad Sci U S A. 2009;106(23):p. 9391–9396.
  • Capozzi ME, Gordon AY, Penn JS, et al. Molecular imaging of retinal disease. J Ocul Pharmacol Ther. 2013;29(2):p. 275–286.
  • Frimmel S, Zandi S, Sun D, et al. Molecular imaging of retinal endothelial injury in diabetic animals. J Ophthalmic Vis Res. 2017;12(2):p. 175–182.
  • Evans SM, Kim K, Moore CE, et al. Molecular probes for imaging of hypoxia in the retina. Bioconjug Chem. 2014;25(11):p. 2030–7. DOI:10.1021/bc500400z.
  • Jayagopal A, Russ PK, Haselton FR. Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem. 2007;18(5):p. 1424–1433.
  • Faber DJ, de Bruin M, Aalders MCG, et al. NAOMI: nanoparticle assisted optical molecular imaging. In: Cartwright AN, Nicolau DV, editors. Nanoscale imaging, Spectroscopy, Sensing, and Actuation for Biomedical Applications. United States of America; Proc. SPIE 6447;  2007. p. 1–9.
  • Kim S, Crose M, Eldridge WJ, et al. Design and implementation of a low-cost, portable OCT system. Biomed Opt Express. 2018;9(3):p. 1232–1243.
  • Scanlon PH. The English National Screening Programme for diabetic retinopathy 2003-2016. Acta Diabetol. 2017;54(6):p. 515–525.
  • The Royal College of Ophthalmologists. The Way Forward. London: The Royal College of Ophthalmologists; 2017.
  • Kern C, Fu DJ, Kortuem K, et al. Implementation of a cloud-based referral platform in ophthalmology: making telemedicine services a reality in eye care. Br J Ophthal. 2019;0:1–6.
  • Health Education England. The Topol review preparing the healthcare workforce to deliver the digital future. London: National Health Service England; 2019.•• This reports highlights the digital transformation required in healthcare services in the UK National Health Service.
  • Kern C, Kortuem K, Hamilton R, et al. Clinical outcomes of a hospital-based teleophthalmology service: what happens to patients in a virtual clinic?. Ophthalmol Retina. 2019;3(5):p. 422–428. DOI:10.1016/j.oret.2019.01.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.