1,404
Views
17
CrossRef citations to date
0
Altmetric
Review

Trends and Technologies in Rehabilitation of Foot Drop: A Systematic Review

ORCID Icon, , & ORCID Icon
Pages 31-46 | Received 06 Sep 2020, Accepted 26 Nov 2020, Published online: 28 Dec 2020

References

  • Algurén B, Lundgren-Nilsson A, Sunnerhagen KS. Functioning of stroke survivors – A validation of the ICF core set for stroke in Sweden. Disabil Rehabil. 2009;32(7):551–559.
  • Mackay J, Mensah G, eds. The Atlas of Heart Disease and Stroke, World Health Organization, Geneva, 2004.http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
  • Wagner JM, Kremer TR, Van Dillen LR, et al. Plantarflexor weakness negatively impacts walking in persons with multiple sclerosis more than plantarflexor spasticity. Arch Phys Med Rehabil. 2014;95(7):1358–1365.
  • Kwon J, Park J-H, Ku S, et al. Robotic ankle-foot-orthosis for post-stroke patients. IEEE Rob Autom Lett. 2019;4(3):2547–2552.
  • Perry J, Clark D. Biomechanical abnormalities of post-polio patients and the implications for orthotic management. Neurorehabilitation. 1997;8(2):119–138.
  • Don R, Serrao M, Vinci P, et al. Foot drop and plantar flexion failure determine different gait strategies in charcot-marie-tooth patients. Clin Biomech. 2007;22(8):905–916.
  • Cameron MH, Wagner JM. Gait abnormalities in multiple sclerosis: pathogenesis, evaluation, and advances in treatment. Curr Neurol Neurosci Rep. 2011;11(5):507.
  • Prosser LA, Curatalo LA, Alter KE, et al. Acceptability and potential effectiveness of a foot drop stimulator in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2012;54(11):1044–1049.
  • Stewart JD. Foot drop: where, why and what to do? Practical Neurology. 2008;8(3):158–169.
  • Connell LA, Klassen TK, Janssen J, et al. Delivering Intensive Rehabilitation in Stroke: Factors Influencing Implementation. Physical Therapy, 2018;98(4):243–250
  • Zhou Z, Meng W, Ai Q, et al. Practical velocity tracking control of a parallel robot based on fuzzy adaptive algorithm. Adv Mech Eng. 2013;5:574896.
  • Corcoran P. Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch Phys Med Rehabil. 1970;51:69–77.
  • Alam M, Choudhury IA, Mamat AB. Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. Sci World J. 2014;2014:1–14.
  • Gök H, Küçükdeveci A, Altinkaynak H, et al. Effects of ankle-foot orthoses on hemiparetic gait. Clin Rehabil. 2003;17(2):137–139.
  • Abe H, Michimata A, Sugawara K, et al. Improving gait stability in stroke hemiplegic patients with a plastic ankle-foot orthosis. Tohoku J Exp Med. 2009;218(3):193–199.
  • Vistamehr A, Kautz SA, Neptune RR. The influence of solid ankle-foot-orthoses on forward propulsion and dynamic balance in healthy adults during walking. Clin Biomech. 2014;29(5):583–589.
  • van Swigchem R, Roerdink M, Weerdesteyn V, et al. The capacity to restore steady gait after a step modification is reduced in people with poststroke foot drop using an ankle-foot orthosis. Phys Ther. 2014;94(5):65463.
  • Appell HJ. Muscular Atrophy Following Immobilisation. Sports Med. 1990;10(1):42.
  • Hamedi M, Salimi P, Aliabadi A, et al. 2015March. Toward intelligent ankle foot orthosis for foot-drop, a review of technologies and possibilities. In 2015 2nd International Conference on Biomedical Engineering (ICoBE), 30–31 March 201, Penang, Malaysia. 1–6. IEEE, doi: 10.1109/ICoBE.2015.7235875
  • Chen G, Chan CK, Guo Z, et al. Review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng. 2013;41(4–5):343–363.
  • Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair. 2008 Sep;23(1):5–13.
  • Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalk™exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. J Spinal Cord Med. 2012;35(2):96–101.
  • Díaz I, Gil JJ, Sánchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Rob. 2011;2011:1–11.
  • Zhang M, Davies T, Xie S. Effectiveness of robot-assisted therapy on ankle rehabilitation – a systematic review. J Neuroeng Rehabil. 2013;10(1):30.
  • Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Rob. 2008;24(1):144–158.
  • Shorter KA, Xia J, Hsiao-Wecksler ET, et al. Technologies for powered ankle-foot orthotic systems: possibilities and challenges. IEEE/ASME Trans Mechatron. 2013;18(1):337–347.
  • Landers M. Treatment-induced neuroplasticity following focal injury to the motor cortex. Int J Rehabi Res. 2004;27(1):1–5.
  • Moreno JC, Barroso F, Farina D, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10(1):79.
  • Forrester LW, Roy A, Krebs HI, et al. “Ankle training with a robotic device improves hemiparetic gait after a stroke,”. Neurorehabil Neural Repair. 2010;25(4):pp. 369–377.
  • Zhou Z, Sun Y, Wang N, et al. Rehabilitation of ankle plantar flexors spasticity: a 3-month study with proprioceptive neuromuscular facilitation. Front Neurorob. 2016;10. DOI:10.3389/fnbot.2016.00016.
  • Liu Q, Liu A, Meng W, et al. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles. Front Neurorob. 2017Dec;4:11.
  • Lyons GM, Sinkjaer T, Burridge JH, et al. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng. 2002 Dec;10(4):260–279.
  • Burridge J, Taylor P, Hagan S, et al. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997 Aug;11(3):201–210.
  • Hausdorff JM, Ring H. Effects of a new radio frequency–controlled neuroprosthesis on gait symmetry and rhythmicity in patients with chronic hemiparesis. Am J Phys Med Rehabil. 2008 Jan;87(1):4–13.
  • Kesar TM, Perumal R, Jancosko A, et al. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010 Jan 1;90(1):55–66.
  • Kottink AIR, Oostendorp LJM, Buurke JH, et al. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs. 2004 Jun;28(6):577–586. Wiley.
  • Laufer Y, Hausdorff JM, Ring H. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity. Am J Phys Med Rehabil. 2009 Jan;88(1):14–20. Ovid Technologies (Wolters Kluwer Health).
  • Laufer Y, Ring H, Sprecher E, et al. Gait in individuals with chronic hemiparesis: one-year follow-up of the effects of a neuroprosthesis that ameliorates foot drop. J Neurol Phys Ther. 2009 Jun;33(2):104–110. Ovid Technologies (Wolters Kluwer Health).
  • Ring H, Treger I, Gruendlinger L, et al. Neuroprosthesis for footdrop compared with an ankle-foot orthosis: effects on postural control during walking. J Stroke Cerebrovascular Dis. 2009 Jan;18(1):41–47.
  • Robbins SM, Houghton PE, Woodbury MG, et al. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: A meta-analysis. Arch Phys Med Rehabil. 2006 Jun;87(6):853–859.
  • Stein RB, Everaert DG, Thompson AK, et al. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2009 Oct;24(2):152–167.
  • Taylor PN, Burridge JH, Dunkerley AL, et al. Clinical use of the odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil. 1999 Dec;80(12):1577–1583.
  • Weingarden H, Ring H. Functional electrical stimulation-induced neural changes and recovery after stroke. Eura Medicophys. 2006;42(2): 87–90. 15.
  • O’Dell MW, Dunning K, Kluding P, et al. Response and prediction of improvement in gait speed from functional electrical stimulation in persons with poststroke drop foot. PM&R. 2014 Jul;6(7):587–601.
  • Liberson W, Holmquest H, Scot D, et al. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–105.
  • Burridge J, Taylor P, Hagan S, et al. Experience of clinical use of the odstock droppedfoot stimulator. Artif Organs. 1997 Mar;21(3):254–260.
  • Edlich R, Wilder RP, Wind TC, et al. Functional electrical stimulation for a dropped foot. J Long Term Eff Med Implants. 2002;12(3):12.
  • Shimada Y, Ando S, Matsunaga T, et al. Clinical application of acceleration sensor to detect the swing phase of stroke gait in functional electrical stimulation. Tohoku J Exp Med. 2005;207(3):197–202.
  • Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Int Disability Studies. 1990 Jan;12(1):6–9.
  • Kotiadis D, Hermens HJ, Veltink PH. Inertial gait phase detection for control of a drop foot stimulator. Med Eng Phys. 2010 May;32(4):287–297.
  • Mariani B, Rouhani H, Crevoisier X, et al. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture. 2013 Feb;37(2):229–234.
  • Breen PP, O’Keeffe DT, Conway R, et al. A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications. Med Eng Phys. 2006 Mar;28(2):177–186.
  • Pereira S, Mehta S, McIntyre A, et al. Functional electrical stimulation for improving gait in persons with chronic stroke. Top Stroke Rehabil. 2012 Nov;19(6):491–498.
  • Koutsou AD, Alnajjar F, Lara SL, et al. Analysis of muscle activation patterns during walking in patients with foot drop: insights for the design of an advanced FES controller. 2019 Advances in Science and Engineering Technology International Conferences (ASET). 2019 Mar., Dubai, UAE. 1–6, IEEE, doi:10.1109/icaset.2019.8714282
  • Yan T, Hui-Chan CWY, Li LSW. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke. Stroke. 2005 Jan;36(1):80–85.
  • Thalman CM, Hsu J, Snyder L, et al. Design of a soft ankle-foot orthosis exosuit for foot drop assistance. 2019 International Conference on Robotics and Automation (ICRA), 2019 May, Montreal, QC, Canada, 2019 May, 8436–8442, IEEE, doi:10.1109/icra.2019.8794005
  • Miao Q, Zhang M, Wang C, et al. Towards optimal platform-based robot design for ankle rehabilitation: the state of the art and future prospects. J Healthc Eng. 2018;1534247. doi:10.1155/2018/1534247
  • Zeng X, Zhu G, Zhang M, et al. Reviewing clinical effectiveness of active training strategies of platform-based ankle rehabilitation robots. J Healthcare Eng. 2018;2858294. 10.1155/2018/2858294
  • Jamwal PK, Hussain S, Xie SQ. Review on design and control aspects of ankle rehabilitation robots. Disabil Rehabil Assist Technol. 2015;10(2):93–101.
  • Khalid YM, Gouwanda D, Parasuraman S. A review on the mechanical design elements of ankle rehabilitation robot. Proc Inst Mech Eng H. 2015;229(6):452–463.
  • Gil-Castillo J, Alnajjar F, Koutsou A, et al. Advances in neuroprosthetic management of foot drop: a review. J Neuroeng Rehabil. 2020;17(1):1–19.
  • Azevedo Coste C, Jovic J, Pissard-Gibollet R, et al. Continuous gait cycle index estimation for electrical stimulation assisted foot drop correction. Springer Science and Business Media LLC J Neuroeng Rehabil. 2014;111:118.
  • Chen G, Shen Z, Zhuang Y, et al. Intensity- and duration-adaptive functional electrical stimulation using fuzzy logic control and a linear model for dropfoot correction. Front Neurol. 2018Mar;12:9.
  • Seel T, Werner C, Raisch J, et al. Iterative learning control of a drop foot neuroprosthesis — generating physiological foot motion in paretic gait by automatic feedback control. Control Eng Pract. 2016Mar;48:87–97.
  • Bucklitsch J, Müller A, Weitner A, et al. Significant impact of implantable functional electrical stimulation on gait parameters: a kinetic analysis in foot drop patients. World Neurosurg. 2019Jul;127:e236–e241.
  • Aragão F, Inocêncio A, Aragão Junior.E M, et al Gait Analysis of Foot Drop in the Anatomic Plan Using the Walkaide® Device. Acta Sci Med Sci. 2019 Oct 11;3(11):29–33.
  • Anaya-Reyes F, Narayan A, Aguirre-Ollinger G, et al. An omnidirectional assistive platform integrated with functional electrical stimulation for gait rehabilitation: A case study. IEEE Trans Neural Syst Rehabil Eng. 2020;28(3):710–719.
  • Woltman HW. Crossing the legs as a factor in the production of peroneal palsy. J Am Med Assoc. 1929 Aug;93(9):670.
  • Berry H, Richardson PM. Common peroneal nerve palsy: a clinical and electrophysiological review. J Neurol Neurosurg Psychiatry. 1976 Dec 1;39(12):1162–1171.
  • Koller RL, Blank NK. Strawberry pickers’ palsy. Arch Neurol. 1980;37(5):320.
  • Jamwal PK, Hussain S, Tsoi YH, et al. (2020). Musculoskeletal model for path generation and modification of an ankle rehabilitation robot. IEEE Transactions on Human-Machine Systems.
  • Potenza A, Faraoni B, Nesi B, et al. Foot drop in cerebral stroke: A comparison between the use of functional electrical stimulation and conventional physiotherapy. Gait Posture. 2012Apr;35:S46.
  • Ding Y, Kastin A, Pan W. Neural plasticity after spinal cord injury. Curr Pharm Des. 2005 Apr;11(11):1441–50b.
  • Zhang L, Li J, Dong M, et al. Design and workspace analysis of a parallel ankle rehabilitation robot (PARR). J Healthcare. 2019 Mar 14;1–10. DOI:10.1155/2019/4164790.
  • Zhu G, Zeng X, Zhang M, et al. Robot-assisted ankle rehabilitation for the treatment of drop foot: A case study. 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA). 2016 Aug., Auckland, pp. 1–5, IEEE, doi:10.1109/mesa.2016.7587130
  • Arnez-Paniagua V, Rifai H, Mohammed S, et al. Adaptive control of an actuated ankle foot orthosis for foot-drop correction. IFAC-PapersOnLine. 2017 Jul;50(1):1384–1389.
  • Yeung L-F, Ockenfeld C, Pang M-K, et al. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. 2017 International Conference on Rehabilitation Robotics (ICORR), 2017 July, London, UK, 211–215, IEEE, doi:10.1109/ICORR.2017.8009248
  • Krishna AV, Chandar S, Bama RS, et al. Novel interactive visual task for robot-assisted gait training for stroke rehabilitation. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). 2018 Aug. Enschede, Netherlands, 402–407, IEEE. doi:10.1109/biorob.2018.8487654
  • Gu GM, Kyeong S, Park D-S, et al. SMAFO: Stiffness modulated ankle foot orthosis for a patient with foot drop. 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). 2015 Aug., Singapore, 543–548, IEEE, doi:10.1109/icorr.2015.7281256
  • Conroy S, Roy A, Magder L, et al. (2020). Treadmill integrated robot-assisted ankle dorsiflexion training for stroke rehabilitation: A randomized controlled trial. doi:10.21203/rs.3.rs-20686/v2
  • Salmeron LJ, Juca GV, Mahadeo SM, et al. (2020, April). An untethered electro-pneumatic exosuit for gait assistance of people with foot drop. in frontiers in biomedical devices. (Vol. 83549, p. V001T09A009). American Society of Mechanical Engineers.
  • Fong J, Rouhani H, Tavakoli M. A therapist-taught robotic system for assistance during gait therapy targeting foot drop. IEEE Rob Autom Lett. 2019;4(2):407–413.
  • Kim SJ, Na Y, Lee DY, et al. Pneumatic AFO powered by a miniature custom compressor for drop foot correction. IEEE Trans Neural Syst Rehabil Eng. 2020;28(8):1781–1789.
  • Martinez-Hernandez U, Rubio-Solis A, Cedeno-Campos V, et al. 2019October. Towards an intelligent wearable ankle robot for assistance to foot drop. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). 2019 Oct., Bari, Italy, 3410–3415. IEEE, doi:10.1109/SMC.2019.8914170
  • Lee M, Kim J, Hyung SY, et al. (2020). A compact ankle exoskeleton with a multi-axis parallel linkage mechanism. IEEE/ASME Transactions on Mechatronics.
  • Zhang M, Xie SQ, Li X, et al. Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans Ind Electron. 2017;65(2):1398–1407.
  • Van Dijk W, Meijneke C, Van Der Kooij H. Evaluation of the achilles ankle exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2016;25(2):151–160.
  • Gasparri GM, Luque J, Lerner ZF. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):751–759.
  • Ridding MC, Brouwer B, Miles TS, et al. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res. 2000 Mar 3;131(1):135–143.
  • Böhm H, Döderlein L, Dussa CU. (2020). Functional electrical stimulation for foot drop in the upper motor neuron syndrome: does it affect 3D foot kinematics during the stance phase of walking?. Fuß & Sprunggelenk.
  • Ferrante S, Chia Bejarano N, Ambrosini E, et al. A personalized multi-channel fes controller based on muscle synergies to support gait rehabilitation after stroke. Front Neurosci. 2016 Sep;16:10.
  • Alnajjar F, Ozaki KI, Itkonen M, et al. Self-support biofeedback training for recovery from motor impairment after stroke. IEEE Access. 2020;8:72138–72157.
  • Eldirdiry O, Zaier R, Al-Yahmedi A, et al. Modeling of a biped robot for investigating foot drop using MATLAB/Simulink. Simul Modell Pract Theory. 2020;98:101972.
  • Adil Abboud S, Al-Wais S, Abdullah SH, et al. Label self-advised support vector machine (lsa-svm)—automated classification of foot drop rehabilitation case study. Biosensors (Basel). 2019;9(4):114.
  • Wen Y, Si J, Gao X, et al. A new powered lower limb prosthesis control framework based on adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst. 2017;28(9):2215–2220.
  • Everaert DG, Stein RB, Abrams GM, et al. Effect of a foot-drop stimulator and ankle–foot orthosis on walking performance after stroke. Neurorehabil Neural Repair. 2013 Apr 4;27(7):579–591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.