465
Views
0
CrossRef citations to date
0
Altmetric
Review

Contact force sensors in minimally invasive catheters: current and future applications

ORCID Icon, , &
Pages 445-455 | Received 09 Dec 2020, Accepted 12 Apr 2021, Published online: 06 May 2021

References

  • Weiss VJ, Lumsden AB. Minimally invasive vascular surgery: review of current modalities. World J Surg. 1999 Apr;23(4):406–414. PubMed PMID: 10030865.
  • Catheter SK. Ablation of Ventricular Arrhythmias. N Engl J Med. 2019 Apr 18;380(16):1555–1564. PubMed PMID: 30995375.
  • Blanc R, Escalard S, Baharvadhat H, et al. Recent advances in devices for mechanical thrombectomy. Expert Rev Med Devices. 2020 Jul;17(7):697–706. PubMed PMID: 32552093.
  • Rao PS. Balloon pulmonary valvuloplasty: a review. Clin Cardiol. 1989 Feb;12(2):55–74. PubMed PMID: 2653678.
  • Oesterle SN, Reifart N, Hayase M, et al. Catheter-based coronary bypass: a development update. Catheter Cardiovasc Interv. 2003 Feb;58(2):212–218. PubMed PMID: 12552547.
  • Cheng W, Law PK. Feedforward Coordinate Control of a Robotic Cell Injection Catheter. Cell Transplant. Cell Transplantation. 2017 Aug;26(8):1319–1330. PubMed PMID: 28901195; PubMed Central PMCID: PMCPMC5680975.
  • Haider H, Lei Y, Ashraf M. MyoCell, a cell-based, autologous skeletal myoblast therapy for the treatment of cardiovascular diseases. Curr Opin Mol Ther. 2008 Dec;10(6):611–621. PubMed PMID: 19051139; PubMed Central PMCID: PMCPMC2668534.
  • Zheng Y, Sampaio LC, Li K, et al. Safety and feasibility of mapping and stem cell delivery in the presence of an implanted left ventricular assist device: a preclinical investigation in sheep. Tex Heart Inst J. 2013;40(3):229–234. PubMed PMID: 23914010; PubMed Central PMCID: PMCPMC3709201.
  • Moya-Angeler J, Gianakos AL, Villa JC, et al. Current concepts on osteonecrosis of the femoral head. World J Orthop. 2015 Sep 18;6(8):590–601. PubMed PMID: 26396935; PubMed Central PMCID: PMCPMC4573503.
  • Klein LW, Miller DL, Balter S, et al. Occupational health hazards in the interventional laboratory: time for a safer environment. J Vasc Interv Radiol. 2009 Jul;20(7Suppl):S278–83. PubMed PMID: 19560009.
  • Rafii-Tari H, Payne CJ, Yang GZ. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng. 2014 Apr;42(4):697–715. PubMed PMID: 24281653.
  • Fu Y, Liu H, Huang W, et al. Steerable catheters in minimally invasive vascular surgery. Int J Med Robot. 2009 Dec 5;5(4):381–391. PubMed PMID: 19795440.
  • Cheng W, Law PK. Conceptual Design and Procedure for an Autonomous Intramyocardial Injection Catheter. Cell Transplant. 2017 May 9;26(5):735–751. PubMed PMID: 27938487; PubMed Central PMCID: PMCPMC5657718.
  • Peters BS, Armijo PR, Krause C, et al. Review of emerging surgical robotic technology. Surg Endosc. 2018 Apr;32(4):1636–1655. PubMed PMID: 29442240.
  • Muller L, Saeed M, Wilson MW, et al. Remote control catheter navigation: options for guidance under MRI. J Cardiovasc Magn Reson. 2012 Jun 1;14(33):33. PubMed PMID: 22655535; PubMed Central PMCID: PMCPMC3461467.
  • Bell JA, Saikus CE, Ratnayaka K, et al. A deflectable guiding catheter for real-time MRI-guided interventions. J Magn Reson Imaging. 2012 Apr;35(4):908–915. PubMed PMID: 22128071; PubMed Central PMCID: PMCPMC3292659.
  • Taffoni F, Formica D, Saccomandi P, et al. Optical fiber-based MR-compatible sensors for medical applications: an overview. Sensors (Basel). 2013 Oct 18;13(10):14105–14120. PubMed PMID: 24145918; PubMed Central PMCID: PMCPMC3859111.
  • Sabri N, Aljunid SA, Salim MS. Fiber Optic Sensors: short Review and Applications. G F, S K, A J. et al. editors. Recent Trends in Physics of Material Science and Technology. Vol. 204. Singapore: Springer: Springer Series in Materials Science; 2015:299-311.
  • Roriz P, Frazao O, Lobo-Ribeiro AB, et al. Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J Biomed Opt. 2013 May;18(5):50903. PubMed PMID: 23722494.
  • Xu L, Miller MI, Ge J, et al. Temperature-Insensitive Fiber-Optic Contact Force Sensor for Steerable Catheters. IEEE Sens J. 2016;16(12):4771–4775.
  • Yokoyama K, Nakagawa H, Shah DC, et al. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythm Electrophysiol. 2008 Dec 1;1(5):354–362. PubMed PMID: 19808430.
  • Ho SC, Razavi M, Nazeri A, et al. FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation. Sensors (Basel). 2012;12(1):1002–1013. PubMed PMID: 22368507; PubMed Central PMCID: PMCPMC3279251.
  • Polygerinos P, Schaeffter T, Seneviratne L, et al. A fibre-optic catheter-tip force sensor with MRI compatibility: a feasibility study. Conf Proc IEEE Eng Med Biol Soc 2009; Minneapolis, US 2009:1501–1554. doi: 10.1109/IEMBS.2009.5334163 PubMed PMID: 19964534.
  • Polygerinos P, Ataollahi A, Schaeffter T, et al. MRI-compatible intensity-modulated force sensor for cardiac catheterization procedures. IEEE Trans Biomed Eng. 2011 Mar;58(3):721–726. PubMed PMID: 21118758.
  • Polygerinos P, Seneviratne LD, Razavi R, et al. Triaxial Catheter-Tip Force Sensor for MRI-Guided Cardiac Procedures. IEEE ASME Trans Mechatron. 2013;18(1):386–396.
  • Polygerinos P, Puangmali P, Seneviratne LD, et al. Novel Miniature MRI-Compatible Fiber-Optic Force Sensor for Cardiac Catherisation Procedures. 2010 IEEE International Conference on Robotics and Automation; May 3–8; Anchorage, Alaska,USA: 2010 IEEE International Conference on Robotics and Automation; 2010. p. 2598–2603.
  • Roriz P, Ramos A, Santos JL, et al. Fiber Optic Intensity-Modulated Sensors: a Review in Biomechanics. Photonic Sens. 2012;2(4):315–330.
  • Islam MR, Ali MM, Lai MH, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review. Sensors (Basel). 2014 Apr 24;14(4):7451–7488. PubMed PMID: 24763250; PubMed Central PMCID: PMCPMC4029708.
  • Su H, Zervas M, Furlong C, et al. A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer. In: P T, editor. MEMS and Nanotechnology, 4. Conference Proceedings of the Society for Experimental Mechanics Series. New York, NY: Springer; 2011.
  • Abushagur AA, Arsad N, Reaz MI, et al. Advances in bio-tactile sensors for minimally invasive surgery using the fibre Bragg grating force sensor technique: a survey. Sensors (Basel). 2014 Apr 9;14(4):6633–6665. PubMed PMID: 24721774; PubMed Central PMCID: PMCPMC4029712.
  • Werneck MM, Allil RC, Ribeiro BA, et al. A Guide to Fiber Bragg Grating Sensors. In: Cuadrado-Laborde C, editor. Current Trends in Short- and Long-period Fiber Gratings: Intech Open; 2013. Available from: https://www.intechopen.com/books/current-trends-in-short-and-long-period-fiber-gratings/a-guide-to-fiber-bragg-grating-sensors
  • Chatzipirpiridis G, Erne P, Ergeneman O, et al. A magnetic force sensor on a catheter tip for minimally invasive surgery. Conf Proc IEEE Eng Med Biol Soc Aug; Milano, Italy 2015:7970–7973. doi: 10.1109/EMBC.2015.7320241. PubMed PMID: 26738141.
  • Jang AK, Changmin K, Kihong P, et al. Development of an integrated optical contact force monitoring sensor for cardiac ablation catheters. Conf Proc IEEE Eng Med Biol Soc Aug; Milan, Italy 2015:4363–4366. doi: 10.1109/EMBC.2015.7319361. PubMed PMID: 26737261.
  • Bourier F, Gianni C, Dare M, et al. Fiberoptic Contact-Force Sensing Electrophysiological Catheters: how Precise Is the Technology? J Cardiovasc Electrophysiol. 2017 Jan;28(1):109-114. PubMed PMID: 27653802.
  • Bourier F, Hessling G, Ammar-Busch S, et al. Electromagnetic Contact-Force Sensing Electrophysiological Catheters: how Accurate is the Technology? J Cardiovasc Electrophysiol. 2016 Mar;27(3):347-50. PubMed PMID: 26643010.
  • Gerstenfeld EP. Contact force-sensing catheters: evolution or revolution in catheter ablation technology? Circ Arrhythm Electrophysiol. 2014 Feb 7;7(1):5–6. PubMed PMID: 24550405.
  • Stabile G, Simone A, Solimene F, et al. Radiation Dose is Significantly Reduced by Use of Contact Force Sensing Catheter During Circumferential Pulmonary Vein Isolation. J Atr Fibrillation. 2015 Apr-May;7(6):1229. PubMed PMID: 27957166; PubMed Central PMCID: PMCPMC4956365.
  • Lee G, Hunter RJ, Lovell MJ, et al. Use of a contact force-sensing ablation catheter with advanced catheter location significantly reduces fluoroscopy time and radiation dose in catheter ablation of atrial fibrillation. Europace. 2016 Feb;18(2):211–218. PubMed PMID: 26318548.
  • Natale A, Monir G, Patel AM, et al. Long-term safety and effectiveness of paroxysmal atrial fibrillation ablation using a porous tip contact force-sensing catheter from the SMART SF trial. J Interv Card Electrophysiol. 2020 May 27. DOI: 10.1007/s10840-020-00780-4 PubMed PMID: 32462550. Available from: https://pubmed.ncbi.nlm.nih.gov/32462550/
  • Shurrab M, Di Biase L, Briceno DF, et al. Impact of Contact Force Technology on Atrial Fibrillation Ablation: a Meta-Analysis. J Am Heart Assoc. 2015 Sep 21;4(9):e002476. PubMed PMID: 26391136; PubMed Central PMCID: PMCPMC4599513.
  • Di Biase L, Natale A, Barrett C, et al. Relationship between catheter forces, lesion characteristics, “popping,” and char formation: experience with robotic navigation system. J Cardiovasc Electrophysiol. 2009;20(4):436–440. PubMed PMID: 19017335.
  • Ganapathy AV, Nazeri A, Ashton J, et al. Contact-force recovery predicts the absence of cardiac perforation during steam pops. [ J Interv Card Electrophysiol. 2020 Jun 13. doi: 10.1007/s10840-020-00794-y. PubMed PMID: 32533277. Available from: https://pubmed.ncbi.nlm.nih.gov/32533277/
  • Nazeri A, Ganapathy A, Massumi A, et al. Contact-force recovery can predict cardiac perforation during radiofrequency ablation. Pacing Clin Electrophysiol. 2014 Sep;37(9):1129–1132. PubMed PMID: 24797921.
  • Shah D, Lambert H, Langenkamp A, et al. Catheter tip force required for mechanical perforation of porcine cardiac chambers. Europace. 2011 Feb;13(2):277–283. PubMed PMID: 21084361.
  • Perna F, Heist EK, Danik SB, et al. Assessment of catheter tip contact force resulting in cardiac perforation in swine atria using force sensing technology. Circ Arrhythm Electrophysiol. 2011 Apr 4;4(2):218–224. PubMed PMID: 21248244.
  • Elsokkari I, Sapp JL, Doucette S, et al. Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route. J Interv Card Electrophysiol. 2018;53(3):323–331. PubMed PMID: 29946899.
  • Reddy VY, Shah D, Kautzner J, et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012 Nov;9(11):1789–1795. DOI:10.1016/j.hrthm.2012.07.016. PubMed PMID: 22820056.
  • Neuzil P, Reddy VY, Kautzner J, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol. 2013 Apr 6;6(2):327–333. PubMed PMID: 23515263.
  • Kautzner J, Neuzil P, Lambert H, et al. EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace. 2015 Aug;17(8):1229–1235. PubMed PMID: 26041872; PubMed Central PMCID: PMCPMC4535556.
  • Ullah W, Hunter RJ, Baker V, et al. Target indices for clinical ablation in atrial fibrillation: insights from contact force, electrogram, and biophysical parameter analysis. Circ Arrhythm Electrophysiol. 2014 Feb 7;1:63–68. DOI:10.1161/CIRCEP.113.001137. PubMed PMID: 24443504.
  • Makimoto H, Metzner A, Tilz RR, et al. Higher contact force, energy setting, and impedance rise during radiofrequency ablation predicts charring: new insights from contact force-guided in vivo ablation. J Cardiovasc Electrophysiol. 2018;29(2):227–235. PubMed PMID: 29116663.
  • Ravi V, Poudyal A, Abid QU, et al. High-power short duration vs. conventional radiofrequency ablation of atrial fibrillation: a systematic review and meta-analysis. Europace. 2021 Feb 1 PubMed PMID: 33523184. DOI:10.1093/europace/euaa327.
  • Nilsson B, Chen X, Pehrson S, et al. The effectiveness of a high output/short duration radiofrequency current application technique in segmental pulmonary vein isolation for atrial fibrillation. Europace. 2006 Nov 8;8(11):962–965. PubMed PMID: 17043070.
  • Leshem E, Zilberman I, Tschabrunn CM, et al. High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: biophysical Characterization. JACC: Clinical Electrophysiology. 2018 Apr 4;4(4):467–479. PubMed PMID: 30067486.
  • Bhaskaran A, Chik W, Pouliopoulos J, et al. Five seconds of 50–60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation. Europace. 2017 May 1;19(5):874–880. PubMed PMID: 27207815.
  • Barkagan M, Contreras-Valdes FM, Leshem E, et al. High-power and short-duration ablation for pulmonary vein isolation: safety, efficacy, and long-term durability. J Cardiovasc Electrophysiol. 2018;Sep;29(9):1287–1296. PubMed PMID: 29846987.
  • Kottmaier M, Popa M, Bourier F, et al. Safety and outcome of very high-power short-duration ablation using 70W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Europace. 2020;22(3):388–393.
  • Vassallo F, Meigre LL, Serpa E, et al. Changes and impacts in early recurrences after atrial fibrillation ablation in contact force era: comparison of high-power short-duration with conventional technique-FIRST experience data. J Interv Card Electrophysiol.. 2020 Nov 5. DOI: 10.1007/s10840-020-00911-x PubMed PMID: 33151444.
  • Vassallo F, Cunha C, Serpa E, et al. Comparison of high-power short-duration (HPSD) ablation of atrial fibrillation using a contact force-sensing catheter and conventional technique: initial results. J Cardiovasc Electrophysiol. 2019;Oct;30(10):1877–1883. PubMed PMID: 31397522.
  • Black-Maier E, Pokorney SD, Barnett AS, et al. Risk of atrioesophageal fistula formation with contact force-sensing catheters. Heart Rhythm. 2017 Sep;14(9):1328–1333. PubMed PMID: 28416466.
  • Das M, Tomlinson DR, Gupta D To the Editor- Contact force-sensing catheters and increased risk of atrioesophageal fistula: is the tool to blame or the workmen?: Is the Tool to Blame or the Workmen? Heart Rhythm. 2018 Jan;15(1): e1. doi: 10.1016/j.hrthm.2017.09.020. PubMed PMID: 28917568.
  • Black-Maier E, Piccini JP. Reply to the Editor—Contact force-sensing catheters and increased risk of atrioesophageal fistula: is the tool to blame or the workmen? Heart Rhythm. 2018 Jan;15(1):e1–e2. PubMed PMID: 28917565.
  • Zhou X, Lv W, Zhang W, et al. Impact of contact force technology on reducing the recurrence and major complications of atrial fibrillation ablation: a systematic review and meta-analysis. Anatol J Cardiol. 2017 Feb;17(2):82–91. PubMed PMID: 28209944; PubMed Central PMCID: PMCPMC5336771.
  • Mansour M, Lakkireddy D, Packer D, et al. Safety of catheter ablation of atrial fibrillation using fiber optic–based contact force sensing. Heart Rhythm. 2017 Nov;14(11):1631–1636. PubMed PMID: 28734985.
  • Liu N, Zhao Q, Li L, et al. Association between the use of contact force-sensing catheters and cardiac tamponade in atrial fibrillation ablation. J Interv Card Electrophysiol. 2019;55(2):137–143. PubMed PMID: 30712075; PubMed Central PMCID: PMCPMC6660577.
  • Haegeli LM, Stutz L, Mohsen M, et al. Feasibility of zero or near zero fluoroscopy during catheter ablation procedures. Cardiol J. 2019;26(3):226–232. PubMed PMID: 29611170.
  • Wolf T, Gepstein L, Dror U, et al. Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. J Am Coll Cardiol. 2001 May;37(6):1590–1597. PubMed PMID: 11345370.
  • Jacobson JT, Hutchinson MD, Cooper JM, et al. Tissue-specific variability in human epicardial impedance. J Cardiovasc Electrophysiol. 2011;22(4):436–439. PubMed PMID: 20946231.
  • Mizuno H, Vergara P, Maccabelli G, et al. Contact force monitoring for cardiac mapping in patients with ventricular tachycardia. J Cardiovasc Electrophysiol. 2013;24(5):519–524. PubMed PMID: 23373693.
  • Tomasi C, Dal Monte A, Argnani MS, et al. Impedance mapping with constant contact force on 3D electroanatomic map to characterize tissues at pulmonary veno-atrial junction. J Interv Card Electrophysiol. 2020 Aug 4. DOI: 10.1007/s10840-020-00845-4 PubMed PMID: 32749567.
  • Sciarra L, Palama Z, Nesti M, et al. Contact-force monitoring increases accuracy of right ventricular voltage mapping avoiding “false scar” detection in patients with no evidence of structural heart disease. Indian Pacing Electrophysiol J. 2020 Aug 6;20(6):243–249. PubMed PMID: 32768620.
  • Teijeira-Fernandez E, Cochet H, Bourier F, et al. Influence of contact force on voltage mapping: a combined magnetic resonance imaging and electroanatomic mapping study in patients with tetralogy of Fallot. Heart Rhythm. 2018 Aug;15(8):1198–1205. PubMed PMID: 29572086.
  • Schecter S, Lin W, Gopal A, et al. Haptics and the heart: force and tactile feedback system for cardiovascular interventions. Cardiovasc Revasc Med. 2018 Sep;19(6):36–40. PubMed PMID: 30017728.
  • Omisore OM, Han SP, Ren LX, et al. Towards Characterization and Adaptive Compensation of Backlash in a Novel Robotic Catheter System for Cardiovascular Interventions. IEEE Trans Biomed Circuits Syst. 2018 Aug;12(4):824–838. PubMed PMID: 29994773.
  • Aranda-Michel E, Yi J, Wirekoh J, et al. Miniaturized Robotic End-Effector with Piezoelectric Actuation and Fiber Optic Sensing for Minimally Invasive Cardiac Procedures. IEEE Sens J. 2018 Jun 15;18(12):4961–4968. PubMed PMID: 30555284; PubMed Central PMCID: PMCPMC6289201.
  • Gelman D, Skanes AC, Tavallaei MA, et al. Design and Evaluation of a Catheter Contact-Force Controller for Cardiac Ablation Therapy. IEEE Trans Biomed Eng. 2016 Nov;63(11):2301–2307. PubMed PMID: 26863646.
  • Gelman D, Skanes AC, Jones DL, et al. Eliminating the effects of motion during radiofrequency lesion delivery using a novel contact-force controller. J Cardiovasc Electrophysiol.2019;30(9):1652–1662. PubMed PMID: 31353683.
  • Kumar N, Wirekoh J, Saba S, et al. Soft Miniaturized Actuation and Sensing Units for Dynamic Force Control of Cardiac Ablation Catheters. Soft robotics. 2021 May 11;8(1):59–70. PubMed PMID: 32392453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.