663
Views
13
CrossRef citations to date
0
Altmetric
Review

Design approaches and challenges for biodegradable bone implants: a review

ORCID Icon &
Pages 629-647 | Received 06 Feb 2021, Accepted 24 May 2021, Published online: 14 Jun 2021

References

  • Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci. 2006;11,(2):118–126.
  • Li J, Qin L, Yang K, et al. Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol. 2020;36:190–208. DOI: 10.1016/j.jmst.2019.07.024.
  • Meningaud JP, Poupon J, Bertrand JC, et al. Dynamic study about metal release from titanium miniplates in maxillofacial surgery. Int J Oral Maxillofac Surg. 2001;30(3):185–188.
  • Jamil W, Allami M, Choudhury MZ, et al. Do orthopaedic surgeons need a policy on the removal of metalwork? A descriptive national survey of practicing surgeons in the United Kingdom. Injury. 2008;39(3):362–367.
  • Hanson B, Van Der Werken C, Stengel D. Surgeons’ beliefs and perceptions about removal of orthopaedic implants. BMC Musculoskelet Disord. 2008;9(1):1–8.
  • Vos DI, Verhofstad MHJ. Indications for implant removal after fracture healing: a review of the literature. Eur J Trauma Emerg Surg. 2013;39(4):327–337.
  • Tian L, Tang N, Ngai T, et al. Hybrid fracture fixation systems developed for orthopaedic applications: a general review. J Orthop Transl. 2019;16:1–13. DOI: 10.1016/j.jot.2018.06.006.
  • Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2012;77:1–34.
  • Han H-S, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals. Mater Today. 2019 March 23;57–71. DOI:10.1016/j.mattod.2018.05.018.
  • Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C. 2017;77:1261–1274. Elsevier B.V. DOI:10.1016/j.msec.2017.04.102.
  • Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–4573. Acta Materialia Inc.
  • Chandra G, Pandey A. Biodegradable bone implants in orthopedic applications : a review. Biocybern Biomed Eng. 2020 Apr;40(2):596–610.
  • Plecko M, Lagerpusch N, Pegel B, et al. The influence of different osteosynthesis configurations with locking compression plates (LCP) on stability and fracture healing after an oblique 45° angle osteotomy. Injury. 2012;43(7):1041–1051. DOI: 10.1016/j.injury.2011.12.016.
  • Rouhi G, Hamedani MA. A brief introduction into orthopaedic implants. Res Chapter. 2012 january;1–19.
  • Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants. J Am Acad Orthop Surg. 2016;24(10):711–719.
  • Stahel PF, Alfonso NA, Henderson C, et al. Introducing the ‘Bone-Screw-Fastener’ for improved screw fixation in orthopedic surgery: a revolutionary paradigm shift? Patient Saf Surg. 2017;11(1):1–8.
  • Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. BioMetals. 2019;32(2):185–193.
  • Yun Y, Dong Z, Lee N, et al. Revolutionizing biodegradable metals. Mater Today. 2009;12(10):22–32. DOI: 10.1016/S1369-7021(09)70273-1.
  • Lin S, Wang Q, Yan X, et al. Mechanical properties, degradation behaviors and biocompatibility evaluation of a biodegradable Zn-Mg-Cu alloy for cardiovascular implants. Mater Lett. 2019;234:294–297. DOI:10.1016/j.matlet.2018.09.092.
  • Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–1344.
  • Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface. 2019;16(156):156.
  • Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1–15.
  • Marco M, Giner E, Larraínzar-Garijo R, et al. Modelling of femur fracture using finite element procedures. Eng Fract Mech. 2018 April;196:157–167.
  • Doblaré M, García JM, Gómez MJ. Modelling bone tissue fracture and healing: a review. Eng Fract Mech. 2004;71(13–14):1809–1840.
  • Mehta CH, Narayan R, Nayak UY. Computational modeling for formulation design. Drug Discov Today. 2019;24(3):781–788.
  • Arnone JC, El-Gizawy AS, Crist BD, et al. Computer-Aided engineering approach for parametric investigation of locked plating systems design. J Med Devices Trans ASME. 2013;7(2):021001.
  • Zanetti EM, Ciaramella S, Calì M, et al. Modal analysis for implant stability assessment: sensitivity of this methodology for different implant designs. Dent Mater. 2018;34(8):1235–1245. DOI:10.1016/j.dental.2018.05.016.
  • Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–141. DOI: 10.1016/j.biomaterials.2016.01.012.
  • Li J, Zheng F, Qiu X, et al. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Mater Sci Eng C. 2014;42:705–714.
  • Xu J, Yang J, Sohrabi S, et al. Finite element analysis of the implantation process of overlapping stents. J Med Devices Trans ASME. 2017;11(2):1–9.
  • Vieira AC, Guedes RM, Tita V. Constitutive modeling of biodegradable polymers: hydrolytic degradation and time-dependent behavior. Int J Solids Struct. 2014;51(5):1164–1174.
  • McHugh PE, Grogan JA, Conway C, et al. Computational modeling for analysis and design of metallic biodegradable stents. J Med Devices Trans ASME. 2015;9(3):1–2.
  • Bui HP, Tomar S, Courtecuisse H, et al. Real-Time Error Control for Surgical Simulation. IEEE Trans Biomed Eng. 2018;65(3):596–607.
  • Zhang L, Zhou L, Ren L, et al. Modeling and simulation in intelligent manufacturing. Comput Ind. 2019;112:103123.
  • Javaid M, Haleem A. Industry 4.0 applications in medical field: a brief review. Curr Med Res Pract. 2019;9(3):102–109.
  • Subasi O, Oral A, Lazoglu I. A novel adjustable locking plate (ALP) for segmental bone fracture treatment. Injury. 2019;50(10):1612–1619.
  • Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016;113(3):716–721. DOI: 10.1073/pnas.1518238113.
  • Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016;81:84–92. DOI: 10.1016/j.biomaterials.2015.11.038.
  • Witte F. Reprint of: the history of biodegradable magnesium implants: a review. Acta Biomater. 2015;23(S):S28–S40.
  • Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30(8,):1512–1523.
  • Yu Y, Lu H, Sun J. Long-term in vivo evolution of high-purity Mg screw degradation — local and systemic effects of Mg degradation products. Acta Biomater. 2018;71:215–224.
  • Witte F, Eliezer A, Cohen S. The history, challenges and the future of biodegradable metal implants. Adv Mater Res. 2010;95:3–7.
  • Yang Y, He C, Dianyu E, et al. Mg bone implant: features, developments and perspectives. Mater Des. 2020 Jan 05;185:108259. Elsevier. DOI: 10.1016/j.matdes.2019.108259.
  • Kundangar R, Singh KA, Mohanty SP, et al. Clinical outcome of internal fixation of middle third clavicle fractures using locking compression plate: comparison between open plating and MIPO. J Orthop. 2019;16(5):414–418.
  • Moriarity A, Ellanti P, Mohan K, et al. A comparison of complication rates between locking and non-locking plates in distal fibular fractures. Orthop Traumatol Surg Res. 2018;104(4):503–506.
  • Cronier P, Pietu G, Dujardin C, et al. The concept of locking plates. Orthop Traumatol Surg Res. 2010;96(4 SUPPL.):S17–S36.
  • Wallace SS, Bechtold D, Sassoon A. Periprosthetic fractures of the distal femur after total knee arthroplasty: plate versus nail fixation. Orthop Traumatol Surg Res. 2017;103(2):257–262.
  • Bel JC. Pitfalls and limits of locking plates. Orthop Traumatol Surg Res. 2019;105(1):S103–S109.
  • Sandriesser S, Rupp M, Greinwald M, et al. Locking design affects the jamming of screws in locking plates. Injury. 2018 June;49:S61–S65.
  • Virtanen S. Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Mater Sci Eng B Solid-State Mater Adv Technol. 2011;176(20):1600–1608.
  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008 Jul;29(20):2941–2953.
  • Ghasemi-Mobarakeh L, Kolahreez D, Ramakrishna S, et al. Key terminology in biomaterials and biocompatibility. Curr Opin Biomed Eng. 2019;10:45–50.
  • Kuwahara H, Al-Abdullat Y, Ohta M, et al. Surface reaction of magnesium in Hank’s solutions. Mater Sci Forum. 2000;350–351:349–358.
  • Wang W, Han J, Yang X, et al. Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: structure and properties characterization. Mater Sci Eng B Solid-State Mater Adv Technol. 2016;214:26–36.
  • Han H-S, Minghui Y, Seok H-K, et al. The modification of microstructure to improve the biodegradation and mechanical properties of a biodegradable Mg alloy. J Mech Behav Biomed Mater. 2013;20:54–60.
  • Wang YP, He Y, Zhu Z, et al. In vitro degradation and biocompatibility of Mg-Nd-Zn-Zr alloy. Chinese Sci Bull. 2012;57(17):2163–2170.
  • He R, Liu R, Chen Q, et al. In vitro degradation behavior and cytocompatibility of Mg-6Zn-Mn alloy. Mater Lett. 2018;228:77–80.
  • Qin H, Zhao Y, An Z, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy. Biomaterials. 2015;53:211–220.
  • Tie D, Feyerabend F, Müller W-D, et al. Antibacterial biodegradable Mg-Ag alloys. Eur Cells Mater. 2013 February;25:284–298. 2013.
  • I. INTERNATIONAL STANDARD. ISO 10993-5:2009 - Biological evaluation of medical devices- Part 5: tests for in vitro cytotoxicity. In: Iso. Switzerland: International Organization for Standardization Geneve; 2009.
  • Chen J, Tan L, Yu X, et al. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater. 2018 April;87:68–79. 2018.
  • Chandra G, Pandey A. Preparation strategies for Mg-alloys for biodegradable orthopaedic implants and other biomedical applications: a review. IRBM. Jun 2020. DOI:10.1016/j.irbm.2020.06.003.
  • Rho J. Democratic science. Nature. 1974;251(5477):673.
  • Menthe E, Bulak A, Olfe J, et al. Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding. Surf Coatings Technol. 2000;133–134:259–263.
  • Bridgeport DA, Brantley WA, Herman PF. Cobalt-Chromium and Nickel-chromium alloys for removable prosthodontics, part 1: mechanical properties. J Prosthodont. 1993 Sep;2(3):144–150.
  • Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22(6):511–521.
  • Eddy Jai G, Poinern SB, Fawcett D. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng. 2013;2(6):218–240.
  • Li Z, Chen M, Li W, et al. The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg-Zn-Zr-Sr alloy. J Alloys Compd. 2017;702:290–302.
  • Chen J, Tan L, Yang K. Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy. Bioact Mater. 2017;2(1):19–26.
  • Gui Z, Kang Z, Li Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion. J Alloys Compd. 2016;685:222–230.
  • ASTM G31-72(2004), standard practice for laboratory immersion corrosion testing of metals, ASTM International, West Conshohocken, PA, 2004.Available from: http://www.astm.org/cgi-bin/resolver.cgi?G31-72(2004)
  • ASTM G1-03(2017)e1, standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM International, West Conshohocken, PA, 2017. Available from: http://www.astm.org/cgi-bin/resolver.cgi?G1-03(2017)e1
  • Sanchez AHM, Luthringer BJC, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13(3):16–31.
  • Gui Z, Kang Z, Li Y. Corrosion mechanism of the as-cast and as-extruded biodegradable Mg-3.0Gd-2.7Zn-0.4Zr-0.1Mn alloys. Mater Sci Eng C. 2019 October;96:831–840. 2019.
  • Baek S-M, Kang JS, Shin H-J, et al. Role of alloyed Y in improving the corrosion resistance of extruded Mg–Al–Ca-based alloy. Corros Sci. 2017;118:227–232.
  • Hou L, Li Z, Zhao H, et al. Microstructure, mechanical properties, corrosion behavior and biocompatibility of as-extruded biodegradable Mg–3Sn–1Zn–0.5Mn alloy. J Mater Sci Technol. 2016;32(9):874–882.
  • Cui Z, Li W, Cheng L, et al. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Mater Charact. 2019 April;151:620–631.
  • Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–555.
  • Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015;28(1):57–71.
  • Chen X, He K, Chen Z, et al. A parametric approach to construct femur models and their fixation plates. Biotechnol Biotechnol Equip. 2016;30(3):529–537.
  • Bottlang M, Schemitsch CE, Nauth A, et al. Biomechanical concepts for fracture fixation. J Orthop Trauma. 2015;29(Supplement 12):S28–S33.
  • Ghimire S, Miramini S, Richardson M, et al. Effects of dynamic loading on fracture healing under different locking compression plate configurations: a finite element study. J Mech Behav Biomed Mater. 2019 November;94:74–85. 2019.
  • Ghimire S, Miramini S, Richardson M, et al. Role of Dynamic Loading on Early Stage of Bone Fracture Healing. Ann Biomed Eng. 2018;46(11):1768–1784.
  • Chandra G, Pandey A, Pandey S. Design of a biodegradable plate for femoral shaft fracture fixation. Med Eng Phys. 2020 Jul;81:86–96.
  • Puleo DA. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20(23–24):2311–2321.
  • Wang Y. Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: a review of problem formulation and computational modeling. Compos Part A Appl Sci Manuf. 2017 Oct 01;101:543–553.
  • Morrison RJ, Kashlan KN, Flanangan CL, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015 Oct;8(5):594–600.
  • Sepehri B, Taheri E, Ganji R. Biomechanical analysis of diversified screw arrangement on 11 holes locking compression plate considering time-varying properties of callus. Biocybern Biomed Eng. 2014;34(4):220–229.
  • Liu Y, Zhu G, Yang H, et al. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method. J Mech Behav Biomed Mater. 2018 July;77:157–163. 2018.
  • Lee Y, Ogihara N, Lee T. Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater. 2019 Sep 01;97:312–320.
  • Fouda N, Mostafa R, Saker A. Numerical study of stress shielding reduction at fractured bone using metallic and composite bone-plate models. Ain Shams Eng J. 2019;xxxx. DOI:10.1016/J.ASEJ.2018.12.005.
  • Long JP, Hollister SJ, Goldstein SA. A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation. J Biomech. 2012;45(15):2651–2657.
  • Duprez M, Bordas SPA, Bucki M, et al. Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study. Appl Math Model. 2020 Jan;77:709–723.
  • Georgiou K, Larentzakis A, Papavassiliou AG. Surgeons‘ and surgical trainees‘ acute stress in real operations or simulation: a systematic review. Surgeon. 2017;15(6):355–365.
  • Ganadhiepan G, Miramini S, Patel M, et al. Bone fracture healing under Ilizarov fixator: influence of fixator configuration, fracture geometry, and loading. Int J Numer Method Biomed Eng. 2019;35(6):1–18.
  • Ganadhiepan G, Zhang L, Miramini S, et al. The effects of dynamic loading on bone fracture healing under Ilizarov circular fixators. J Biomech Eng. 2019;141(5):051005.
  • Miramini S, Zhang L, Richardson M, et al. The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation. Australas Phys Eng Sci Med. 2016;39(1):123–133.
  • Ren T, Dailey HL. Mechanoregulation modeling of bone healing in realistic fracture geometries. Biomech Model Mechanobiol. 2020;19(6):2307–2322.
  • Yin X, Niu Z, He Z, et al. An integrated computational intelligence technique based operating parameters optimization scheme for quality improvement oriented process-manufacturing system. Comput Ind Eng. 2020 Feb;140:106284.
  • Amin MT, Khan F, Zuo MJ. A bibliometric analysis of process system failure and reliability literature. Eng Fail Anal. 2019 Dec 01;106:104152.
  • Panetto H, Iung B, Ivanov D, et al. Challenges for the cyber-physical manufacturing enterprises of the future. Annu Rev Control. 2019 Jan 01;47:200–213.
  • Liang S, Rajora M, Liu X, et al. Intelligent manufacturing systems: a review. Int J Mech Eng Rob Res. 2016;7(2):324–330.
  • Carluccio D, Demir AG, Bermingham MJ, et al. Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone Scaffold applications. Metall Mater Trans A Phys Metall Mater Sci. 2020;51(7):3311–3334.
  • Taltavull C, Torres B, López AJ, et al. Selective laser surface melting of a magnesium-aluminium alloy. Mater Lett. 2012;85:98–101.
  • Parida RP, Senthilkumar V. Analytical analysis and experimental validation of the effects of process parameters on meltpool size during the Selective Laser Melting (SLM) of Inconel 718. Lasers Eng Old City Publ. 2021;49(1–3):85–105.
  • Kant R, Gurung H, Sarma U, et al. Development and analysis of laser-assisted bending with moving pre-displacement load. Lasers Eng Old City Publ. 2021;49(1–3):21–47.
  • Gao C, Li S, Liu L, et al. Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting. J Magnes Alloy. 2021;9(1):305–316.
  • Gao C, Yao M, Li S, et al. Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting. J Adv Res. 2019;20:91–104.
  • Liu ZY, Li JN, Sui YW, et al. Preparation and analysis of amorphous gradient composites on TC17 titanium alloy by Laser Melting Deposition (LMD). Lasers Eng Old City Publ. 2021;48(4–6):227–235.
  • ASTM F2502-17, Standard Specification and Test Methods for Absorbable Plates and Screws for Internal Fixation Implants, i, April 2002. 2003.
  • ASTM F543-17, standard specification and test methods for metallic medical bone screws, ASTM International, West Conshohocken, PA, 2017. Available from: http://www.astm.org/cgi-bin/resolver.cgi?F543-17
  • ASTM F382-17, standard specification and test method for metallic bone plates, ASTM International, West Conshohocken, PA, 2017. Available from: http://www.astm.org/cgi-bin/resolver.cgi?F382-17
  • Kraus T, Fischerauer SF, Hänzi AC, et al. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230–1238.
  • Koo Y, Jang Y, Yun Y. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals. Mater Sci Eng B Solid-State Mater Adv Technol. 2017;219:45–54.
  • Lin C-H, Chao C-K, Ho Y-J, et al. Modification of the screw hole structures to improve the fatigue strength of locking plates. Clin Biomech. 2018 December;54:71–77. 2018.
  • Md Saad AP, Abdul Rahim RA, Harun MN, et al. The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone. Mater Des. 2017;122:268–279.
  • Mehboob H, Chang S-H. Optimal design of a functionally graded biodegradable composite bone plate by using the Taguchi method and finite element analysis. Compos Struct. 2015;119:166–173.
  • Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater. 2020;5(1):61–81.
  • Vaidya A, Aydin A, Ridgley J, et al. Current status of technical skills assessment tools in surgery: a systematic review. J Surg Res. 2020;246:342–378.
  • Gibon E, Lu LY, Nathan K, et al. Inflammation, ageing, and bone regeneration. J Orthop Transl. 2017;10:28–35.
  • Wang M, Yang N. A review of bioregulatory and coupled mechanobioregulatory mathematical models for secondary fracture healing. Med Eng Phys. 2017;48:90–102.
  • Ghiasi MS, Chen J, Vaziri A, et al. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 2017;6:87–100.
  • Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5744–5794.
  • Liu C, Ren Z, Xu Y, et al. Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning. 2018;2018:1–15.
  • Prakasam M, Locs J, Salma-Ancane K, et al. Biodegradable materials and metallic implants—a review. J Funct Biomater. 2017;8(4):44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.