187
Views
1
CrossRef citations to date
0
Altmetric
Review

The modern pharmacological approach to diabetes: innovative methods of monitoring and insulin treatment

, , , , , , & show all
Pages 581-589 | Received 17 Mar 2022, Accepted 11 Aug 2022, Published online: 21 Aug 2022

References

  • Lee H, Hong YJ, Baik S, et al. Enzyme-based glucose sensor: from invasive to wearable device. Adv Healthcare Mater. 2018;7(8):1701150.
  • Schütt M, Kern W, Krause U, et al. Is the frequency ¨ of self-monitoring of blood glucose related to long-term metabolic control? Multicenter analysis including 24500 patients from 191 centers in Germany and Austria. Exp Clin Endocrinol Diabetes. 2006;114(7):384–388.
  • Yang J, Zhang LJ, Wang F, et al. Molecular imaging of diabetes and diabetic complications: beyond pancreatic β-cell targeting. Adv Drug Deliv Rev. 2019;139:32–50.
  • Galiero R, Pafundi PC, Nevola R, et al. The importance of telemedicine during COVID-19 pandemic: a focus on diabetic retinopathy. J Diabetes Res. 2020; Article ID.9036847:8.
  • Tonyushkina K, Nichols HJ. Glucose meters: a review of technical challenges to obtaining accurate results. J Diabetes Sci Technol. 2009;3(4):971–980.
  • Stephenson L, Latham MC. Lactose intolerance and milk consumption: the relation of tolerance to symptoms. Am J Clin Nutr. 1974;27(3):296–303.
  • Clarke SF, Foster JR. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br J Biomed Sci. 2012;69(2):83–93.
  • Gyula P, Gyula T, András P. Blood sugar determination by the reflomat reflection photometer. Orv Hetil. 1977;118(1):25–27.
  • Burritt M. Current analytical approaches to measuring blood analytes. Clin Chem. 1990;36(8):1562–1566.
  • Zheng H, He J, Li P, et al. Glucose screening measurements and noninvasive glucose monitor methods. Procedia Comput Sci. 2018;139:613–621.
  • Haller JM, Shuster JJ, Schatz D, et al. Adverse impact of temperature and humidity on blood glucose monitoring reliability: a pilot study. Diabetes Technol Ther. 2007;9(1):1–9.
  • Bilen H, Kilicaslan A, Akcay G, et al. Performance of glucose dehydrogenase (GDH) based and glucose oxidase (GOX) based blood glucose meter systems at moderately high altitude. J Med Eng Technol. 2007;31(2):152–156.
  • Bamberg R, Schulman K, MacKenzie M, et al. Effect of adverse storage conditions on performance of glucometer test strips. Clin Lab Sci. 2005;18(4):203–209.
  • Bergenstal RM. Evaluating the accuracy of modern glucose meters. Insulin. 2008;3(1):5–14.
  • Dungan K, Chapman J, Braithwaite SS, et al. Glucose measurement: confounding issues in setting targets for inpatient management. Diabetes Care. 2007;30(2):403–409.
  • Baum MJ, Monhaut MN, Parker RD, et al. Improving the quality of self-monitoring blood glucose measurement: a study in reducing calibration errors. Diabetes Technol Ther. 2006;8(3):347–357.
  • Karon SB, Griesmann L, Scott R, et al. Evaluation of the impact of hematocrit and other interference on the accuracy of hospital-based glucose meters. Diabetes Technol Ther. 2008;10(2):111–120.
  • Tang Z, Du X, Louie RF, et al. Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyser. Am J Clin Pathol. 2000;113(1):75–86.
  • Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med. 1997;14(S5):S7–S85.
  • Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–461.
  • Meetoo D, Wong L, Ochieng B. Smart tattoo: technology for monitoring blood glucose in the future. Br J Nurs. 2019;28(2):110–115.
  • Long R, McShane M. Optical instrument design for interrogation of dermally-implanted luminescent microparticle sensors. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5656–5659.
  • Lipani L, Dupont BGR, Doungmene F, et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat Nanotechnol. 2018;13(6):504–511.
  • Yao Y, Chen J, Guo Y, et al. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. Biosens Bioelectron. 2021;179:113078.
  • Lee H, Song C, Hong YS, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3(3):e1601314.
  • Lee I, Probst D, Klonoff D, et al. Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research. Biosens Bioelectron. 2021;181:113054.
  • Thomas N, Lähdesmäki I, Parviz BA. A contact lens with an integrated lactate sensor. Sens Actuators B Chem. 2012;162(1):128–134.
  • Senior M. Novartis signs up for Google smart lens. Nat Biotechnol. 2014;32(9):856.
  • King L. Google smart contact lens focuses on healthcare billions. Available from: www.forbes.com/sites/leoking/2014/07/15/google-smart-contact-lens-focuses-on-healthcare-billions
  • Bruen D, Delaney C, Florea L, et al. Glucose sensing for diabetes monitoring: recent developments. Sensors. 2017;17(8):1866.
  • Tsukayama H. Google’s smart contact lens: what it does and how it works. Available from: https://www.washingtonpost.com/business/technology/googles-smart-contact-lens-what-it-does-and-how-it-works/2014/01/17/96b938ec-7f80-11e3-93c1-0e888170b723_story.html
  • Kleinman J. Google’s smart contact lenses move one step closer to launch. 15 Jul 2014. Available from: https://www.technobuffalo.com/google-smart-contact-lens
  • Lakkireddy HR, Urmann M, Besenius M, et al. Oral delivery of diabetes peptides — comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev. 2016;106:196–222.
  • Li R, Mei X, Li X, et al. A bolt-like-blocking nanovalve on mesoporous silica nanoparticles for controlled release. Microporous Mesoporous Mater. 2021;317:111007.
  • Wang J, Yadav V, Smart AL, et al. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm. 2015;12(3):966–973.
  • Gao Y, He Y, Zhang H, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582:364–375.
  • Erel G, Kotmakçı M, Akbaba H, et al. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: in vitro and in vivo evaluation of insulin loaded formulation. J Drug Deliv Sci Tec. 2016;36:161–167.
  • Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–284.
  • Liu D, Regenstein JM, Diao Y, et al. Antidiabetic effects of water-soluble Korean pine nut protein on type 2 diabetic mice biomed. Pharmacother. 2019;117:108989.
  • Yang Y, Chen S, Liu Y, et al. Long-term treatment of polysaccharides-based hydrogel microparticles as oral insulin delivery in streptozotocin-induced type 2 diabetic mice. Biomed Pharmacother. 2021;133:110941.
  • Vrueh PL, Smith C, Lee CP. Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, caco-2. J Pharmacol Exp Ther. 1998;286(3):1166–1170.
  • Zhai W, Sun X, James TD, et al. Boronic acid-based carbohydrate sensing. Chemistry an Asian Journal. 2015;10(9):1836.
  • Patravale V, Dandekare P, Jain R, et al. Nanoparticulate drug delivery. chapter: nanotoxicology: evaluating toxicity potential of drug-nanoparticles. Woodhead Publishing Series in Biomedicine. 2012.
  • Appleton SL, Tannous M, Argenziano M, et al. Nanosponges as protein delivery systems: insulin, a case study. Int J Pharm. 2020;590:119888.
  • Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharm. 2018;549(1–2):201–217.
  • Nikpoor AR, Tavakkol-Afshari J, Gholizadeh Z, et al. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model. Int J Pharm. 2015;495(1):162–170.
  • Hatamipour M, Sahebkar A, Alavizadeh SH, et al. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids Iran. J Basic Med Sci. 2019;22(3):282–289.
  • Yazdia JR, Tafaghodib M, Sadri K, et al. Folate targeted PEGylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;194:111203.
  • Bahman F, Taurin S, Altayeb D, et al. Oral insulin delivery using poly (styrene co-maleic acid) micelles in a diabetic mouse model. Pharmaceutics. 2020;12(11):1026.
  • Parayath NN, Nehoff H, Müller P, et al. Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery–dual uptake through enterocytes and M-cells. Int J Nanomed. 2015;10:4653.
  • Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(1):5–47.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268.
  • Lee D, Ashcraft JN, Verploegen E, et al. Permeability of model stratum corneum lipid membrane measured using quartz crystal microbalance. Langmuir. 2009;25(10):5762–5766.
  • Liu Y, Zhao F, Dun J, et al. Lecithin/isopropyl myristate reverse micelles as transdermal insulin carriers: experimental evaluation and molecular dynamics simulation. J Drug Delivery Sci Technol. 2020;59:101891.
  • Kaur P, Garg T, Rath G, et al. In situ nasal gel drug delivery: a novel approach for brain targeting through the mucosal membrane. Artif Cells, Nanomed Biotechnol. 2016;44(4):1167–1176.
  • Thwala LN, Pr´eat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14(1):23–36.
  • Chugh Y, Kapoor P, Kapoor AK. Intranasal drug delivery: a novel approach. Indian J Otolaryngol Head Neck Surg. 2009;61(2):90–94.
  • Jadhav K, Gambhire M, Shaikh I, et al. Nasal drug delivery system-factors affecting and applications. Curr Drug Ther. 2008;2(1):27–38.
  • Khafagy E-S, Morishita M, Onuki Y, et al. Current challenges in noninvasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev. 2007;59(15):1521–1546.
  • Duan X, Mao S. New strategies to improve the intranasal absorption of insulin. Drug Discov Today. 2010;15(11–12):416–427.
  • Soares S, Costa A, Sarmento B. Novel non-invasive methods of insulin delivery. Expert Opin Drug Deliv. 2012;9(12):1539–1558.
  • Cheang JY, Moyle PM. Glucagon-like peptide-1 (GLP-1)-based therapeutics: current status and future opportunities beyond type 2 diabetes. ChemMedChem. 2018;13(7):662–671.
  • Shechter Y, Mironchik M, Rubinraut S, et al. Reversible pegylation of insulin facilitates its prolonged action in vivo. Eur J Pharm Biopharm. 2008;70(1):19–28.
  • Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11(3):1–20.
  • Varshosaz J, Sadrai H, Alinagari R. Nasal delivery of insulin using chitosan microspheres. J Microencapsul. 2004;21(7):761–774.
  • D’Souza R, Mutalik S, Venkatesh M, et al. Nasal insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6(2):E184–E189.
  • Zhao LI, Xiao C, Ding J, et al. Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polym Chem. 2015;6(20):3807–3815.
  • Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–1426.
  • Torabi N, Noursadeghi E, Shayanfar F, et al. Intranasal insulin improves the structure–function of the brain mitochondrial ATP–sensitive Ca2+ activated potassium channel and respiratory chain activities under diabetic conditions. Biochim Biophys Acta Mol Basis Dis. 2021;1867(4):166075.
  • Caturano A, Galiero R, Pafundi PC. Metformin for type 2 diabetes. JAMA. 2019;322(13):1312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.