2,485
Views
0
CrossRef citations to date
0
Altmetric
Review

Previous, current, and future stereotactic EEG techniques for localising epileptic foci

, , &
Pages 571-580 | Received 21 Mar 2022, Accepted 16 Aug 2022, Published online: 24 Aug 2022

References

  • Ngugi AK, Bottomley C, Kleinschmidt I, et al. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach: estimation of the burden of epilepsy. Epilepsia. 2010;51(5):883–890.
  • Engel J. What can we do for people with drug-resistant epilepsy?: The 2016 Wartenberg Lecture. Neurology. 2016;87(23):2483–2489.
  • Wiebe S, et al. A Randomized, Controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–318.
  • Engel J, McDermott MP, Wiebe S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA. 2012;307(9):922–930.
  • Engel J, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993.
  • Thadani VM, Williamson PD, Berger R, et al. Successful epilepsy surgery without intracranial EEG recording: criteria for patient selection. Epilepsia. 1995;36(1):7–15.
  • Kilpatrick C, Cook M, Kaye A, et al. Non-invasive investigations successfully select patients for temporal lobe surgery. J Neurol Neurosurg Psychiatry. 1997;63(3):327–333.
  • Diehl B, Lüders HO. Temporal lobe epilepsy: when are invasive recordings needed? Epilepsia. 2000;41(3):S61–74.
  • Rodionov R, O’Keeffe A, Nowell M, et al. Increasing the accuracy of 3D EEG implantations. J Neurosurg. 2020;133(1):35–42.
  • Vakharia VN, Duncan JS, Witt J-A, et al. Getting the best outcomes from epilepsy surgery: epilepsy surgery outcomes. Ann Neurol. 2018;83(4):676–690.
  • Mullin JP, Shriver M, Alomar S, et al., Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia. 2016; 57(3): 386–401.
  • Feindel W. Epilepsy surgery in Canada. In Textbook of Epilepsy Surgery. 2008. p. 103–115.
  • Almeida AN, Martinez V, Feindel W. The first case of invasive EEG monitoring for the surgical treatment of epilepsy: historical significance and context. Epilepsia. 2005;46(7):1082–1085.
  • Berker EA, Berker AH, Smith A. Translation of Broca’s 1865 report: localization of speech in the third left frontal convolution. Arch Neurol. 1986;43(10):1065–1072.
  • York GKsIII, Steinberg DA. Hughlings Jackson’s neurological ideas. Brain. 2011;134(10):3106–3113.
  • Fritsch G, Hitzig E. Electric excitability of the cerebrum (Über die elektrische Erregbarkeit des Grosshirns). Epilepsy Behav. 2009;15(2):123–130.
  • Ferrier D. Experimental researches in cerebral physiology and pathology. J Anat Physiol. 1873;8(Pt 1):152–155.
  • Bartholow R. Experimental investigations into the functions of the human brain. Am J Med Sci. 1874;66(134):305–313.
  • Krause F. Chirurgie des Gehirns und Rückenmarks nach eigenen Erfahrungen. Berlin, Germany: Urban & Schwarzenberg; 1911.
  • Reif PS, Strzelczyk A, Rosenow F. The history of invasive EEG evaluation in epilepsy patients. Seizure. 2016;41:191–195.
  • Berger H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten. 1929;87(1):527–570.
  • Foerster O, Altenburger H. Elektrobiologische Vorgänge an der menschlichen Hirnrinde. Deutsche Zeitschrift für Nervenheilkunde. 1935;135(5–6):277–288.
  • Rasmussen T, Penfield W. The human sensorimotor cortex as studied by electrical stimulation. Fed Proc. 1947;6(1 Pt 2):184.
  • Rasmussen T, Penfield W. Further studies of the sensory and motor cerebral cortex of man. Federation Proc. 1947;6(2):452–460.
  • Schott GD. Penfield’s homunculus: a note on cerebral cartography. J Neurol Neurosurg Psychiatry. 1993;56(4):329.
  • Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation1. Brain. 1937;60(4):389–443.
  • Penfield W, Faulk ME. The insula: further observations on its function1. Brain. 1955;78(4):445–470.
  • Jasper H, Pertuisset B, Flanigin H. EEG and cortical electrograms in patients with temporal lobe seizures. AMA Arch Neurol Psychiatry. 1951;65(3):272–290.
  • Penfield W, Flanigin H. Surgical therapy of temporal lobe seizures. AMA Arch Neurol Psychiatry. 1950;64(4):491–500.
  • Hayne R, Meyers R, Knott JR. Characteristics of electrical activity of human corpus striatum and neighboring structures. J Neurophysiol. 1949;12(3):185–195.
  • Talairach J, Hecaen H, David M. Recherches sur la coagulation thérapeutique des structures sous-corticales chez l’homme. Rev Neurol. 1949;81:4–24.
  • Talairach J, Tournoux P, Corredor H, et al. Atlas d’anatomie stereotaxique du telencephale: etudes anatomo-radiologiques. Paris, France: Masson; 1957.
  • Talairach J, Bancaud J, Bonis A, et al. Functional stereotaxic exploration of epilepsy. SFN. 1962;22:328–331.
  • Talairach J, Bancaud JL. “Irritative” zone and epileptogenic focus. SFN. 1966;27:91–94.
  • Gonzalez-Martinez J, Mullin J, Vadera S, et al. Stereotactic placement of depth electrodes in medically intractable epilepsy: technical note. J Neurosurg. 2014;120(3):639–644.
  • Serletis D, Bulacio J, Bingaman W, et al. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg. 2014;121(5):1239–1246.
  • Bancaud J. Epilepsy after 60 years of age. Experience in a functional neurosurgical department. Sem Hop. 1970;46(48):3138–3140.
  • Bancaud J, Angelergues R, Bernouilli C, et al. Functional stereotaxic exploration (SEEG) of epilepsy. Electroencephalogr Clin Neurophysiol. 1970;28(1):85–86.
  • Cossu M, Cardinale F, Castana L, et al. Stereo-EEG in children. Childs Nerv Syst. 2006;22(8):766–778.
  • Cross JH. Epilepsy surgery in childhood. Epilepsia. 2002;43(Suppl 3):65–70.
  • Quesney LF, Gloor P. Localization of epileptic foc Electroencephalogri. Clin Neurophysiol Suppl. 1985;37:165–200.
  • Talairach J, Bancaud J, Bonis A, et al. Surgical therapy for frontal epilepsies. Adv Neurol. 1992;57:707–732.
  • Arya R, Mangano FT, Horn PS, et al. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia. 2013;54(5):828–839.
  • Cardinale F, Cossu M. SEEG has the lowest rate of complications. J Neurosurg. 2015;122(2):475–477.
  • Cardinale F, Pero G, Quilici L, et al. Cerebral angiography for multimodal surgical planning in epilepsy surgery: description of a new three-dimensional technique and literature review. World Neurosurg. 2015;84(2):358–367.
  • Cardinale F, Casaceli G, Raneri F, et al. Implantation of Stereoelectroencephalography electrodes: a systematic review. J Clin Neurophysiol. 2016;33(6):490–502.
  • Vakharia VN, Sparks R, O’Keeffe AG, et al., Accuracy of intracranial electrode placement for stereoelectroencephalography: a systematic review and meta-analysis. Epilepsia.2017; 58(6): 921–932.
  • González-Martínez J, Bulacio J, Thompson S, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2016;78(2):169–180.
  • Cardinale F, Cossu M, Castana L, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–366. discussion 366.
  • Dorfer C, Minchev G, Czech T, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg. 2017;126(5):1622–1628.
  • Vakharia VN, Rodionov R, Miserocchi A, et al., Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial. Sci Rep. 2021; 11(1): 17127.
  • Vakharia VN, Sparks R, Miserocchi A, et al., Computer-assisted planning for stereoelectroencephalography (SEEG). Neurotherapeutics. 2019; 16(4): 1183–1197.
  • Sparks R, Zombori G, Rodionov R, et al. Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment. Int J CARS. 2017;12(1):123–136.
  • De Momi E, Caborni C, Cardinale F, et al. Multi-trajectories automatic planner for Stereoelectroencephalography (SEEG). Int J CARS. 2014;9(6):1087–1097.
  • O’Sullivan D, Fraccaro P, Carson E, et al. Decision time for clinical decision support systems. Clin Med (Lond). 2014;14(4):338–341.
  • Zombori G, Rodionov R, Nowell M, et al. A computer assisted planning system for the placement of seeg electrodes in the treatment of epilepsy. Cham: Springer International Publishing.
  • De Momi E, Caborni C, Cardinale F, et al. Automatic trajectory planner for stereoelectroencephalography procedures: a retrospective study. IEEE Trans Biomed Eng. 2013;60(4):986–993.
  • Bériault S, Subaie FA, Collins DL, et al. A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J Comput Assist Radiol Surg. 2012;7(5):687–704.
  • Zelmann R, Beriault S, Marinho MM, et al. Improving recorded volume in mesial temporal lobe by optimizing stereotactic intracranial electrode implantation planning. Int J Comput Assist Radiol Surg. 2015;10(10):1599–1615.
  • Nowell M, Sparks R, Zombori G, et al. Comparison of computer-assisted planning and manual planning for depth electrode implantations in epilepsy. JNS. 2016;124(6):1820–1828.
  • Vakharia VN, Sparks R, Rodionov R, et al. Computer-assisted planning for the insertion of stereoelectroencephalography electrodes for the investigation of drug-resistant focal epilepsy: an external validation study. J Neurosurg. 2018; 1–10. DOI:10.3171/2017.10.JNS171826.
  • Granados A, Vakharia V, Rodionov R, et al. Automatic segmentation of stereoelectroencephalography (SEEG) electrodes post-implantation considering bending. Int J Comput Assist Radiol Surg. 2018;13(6):935–946.
  • Nowell M, Sparks R, Zombori G, et al. Resection planning in extratemporal epilepsy surgery using 3D multimodality imaging and intraoperative MRI. Br J Neurosurg. 2017;31(4):468–470.
  • Dasgupta D, Elliott CA, Sparks R, et al. Refining-computer-assisted-stereo-electroencephalography-(SEEG)-planning-using-spatial-prior-trajectories-–-a-retrospective-validation. AES [Internet]. Chicago: Epilepsia; 2021 [cited 2022 Feb 17]. Available from: https://cms.aesnet.org/abstractslisting/refining-computer-assisted-stereo-electroencephalography-(seeg)-planning-using-spatial-prior-trajectories-–-a-retrospective-validation
  • Essert C, Haegelen C, Lalys F, et al. Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg. 2012;7(4):517–532.
  • Shamir RR, Joskowicz L, Tamir I, et al. Reduced risk trajectory planning in image-guided keyhole neurosurgery. Med Phys. 2012;39(5):2885–2895.
  • Sparks R, Vakharia V, Rodionov R, et al. Anatomy-driven multiple trajectory planning (ADMTP) of intracranial electrodes for epilepsy surgery. Int J CARS. 2017;12(8):1245–1255.
  • Scorza D, De Momi E, Plaino L, et al. Retrospective evaluation and SEEG trajectory analysis for interactive multi-trajectory planner assistant. Int J Comput Assist Radiol Surg. 2017;12(10):1727–1738.
  • Li H, Wang Y, Wan R, et al. Domain generalization for medical imaging classification with linear-dependency regularization. arXiv preprint arXiv:200912829. 2020.
  • Dimakopoulos V, Mégevand P, Boran E, et al. Blinded study: prospectively defined high-frequency oscillations predict seizure outcome in individual patients. Brain Commun. 2021;3(3):fcab209.
  • Liu S, Gurses C, Sha Z, et al. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy. Brain. 2018;141(3):713–730.
  • Parasuram H, Gopinath S, Pillai A, et al. Quantification of epileptogenic network from stereo EEG recordings using epileptogenicity ranking method. Front Neurol. 2021;12:738111.
  • Marcus HJ, Vakharia VN, Ourselin S, et al. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst. 2018;34(7):1299–1309.
  • Vakharia VN, Sparks R, Li K, et al. Automated trajectory planning for laser interstitial thermal therapy in mesial temporal lobe epilepsy. Epilepsia. 2018;59(4):814–824.
  • Cai F, Wang K, Zhao T, et al. BrainQuake: an open-source python toolbox for the stereoelectroencephalography spatiotemporal analysis. Front Neuroinform [Internet]. 2022 [cited 2022 Jan 28];15. Available from: https://www.frontiersin.org/article/10.3389/fninf.2021.773890
  • Liu JV, Kobylarz EJ, Darcey TM, et al. Improved mapping of interictal epileptiform discharges with EEG-fMRI and voxel-wise functional connectivity analysis. Epilepsia. 2014;55(9):1380–1388.
  • Zweiphenning WJEM, von Ellenrieder N, Dubeau F, et al. Correcting for physiological ripples improves epileptic focus identification and outcome prediction. Epilepsia [Internet]. [cited 2022 Jan 28]. n/a. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.17145
  • Machado S, Bonini F, McGonigal A, et al. Prefrontal seizure classification based on stereo-EEG quantification and automatic clustering. Epilepsy Behav. 2020;112:107436.
  • Sonoda M, Carlson A, Rothermel R, et al. Long-term satisfaction after extraoperative invasive EEG recording. Epilepsy Behav. 2021;124:108363.
  • Chiang C-H, Wang C, Barth K, et al. Flexible, high-resolution thin-film electrodes for human and animal neural research. J Neural Eng. 2021;18(4):045009.
  • Chari A, Thornton RC, Tisdall MM, et al. Microelectrode recordings in human epilepsy: a case for clinical translation. Brain Comm. 2020;2(2):fcaa082.
  • Rasul FT, Bal J, Pereira EA, et al. Current surgical options for patients with epilepsy. Curr Pharm Des. 2017;23(42):6508–6523.
  • Pinzi M, Vakharia VN, Hwang BY, et al. Computer assisted planning for curved laser interstitial thermal therapy. IEEE Trans Biomed Eng. 2021;68(10):2957–2964.