332
Views
0
CrossRef citations to date
0
Altmetric
Review

MRI-guided endovascular intervention: current methods and future potential

ORCID Icon, , , , , , & show all
Pages 763-778 | Received 06 Apr 2022, Accepted 25 Oct 2022, Published online: 13 Nov 2022

References

  • Higashida RT, Lahue BJ, Torbey MT, et al. Treatment of unruptured intracranial aneurysms: a nationwide assessment of effectiveness. AJNR Am J Neuroradiol. 2007;28:146–151.
  • Bock M, Wacker FK MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27:326–338.
  • Rudin S, Bednarek DR, Hoffmann KR Endovascular image-guided interventions (EIGIs). Med Phys. 2008;35:301.
  • Thomas DG, Davis CH, Ingram S, et al. Stereotaxic biopsy of the brain under MR imaging control. AJNR Am J Neuroradiol. 1986;7:161–163.
  • Mueller PR, Stark DD, Simeone JF, et al. MR-guided aspiration biopsy: needle design and clinical trials. Radiology. 1986;161:605–609.
  • Lufkin R, Teresi L, Hanafee W New needle for MR-guided aspiration cytology of the head and neck. Am J Roentgenol. 1987;149:380–382.
  • Van Sonnenberg E, Hajek PC, Baker LL, et al. Materials for MR- guided interventional radiology procedures: laboratory and clinical experience. 1986.
  • Köchli VD, McKinnon GC, Hofmann E, et al. Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med. 1994;31:309–314.
  • Bakker CJ, Hoogeveen RM, Weber J, et al. Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med. 1996;36:816–820.
  • Bakker CJ, Smits HF, Bos C, et al. MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for guiding, monitoring, and evaluating endovascular interventions. J Magn Reson Imaging. 1998;8:245–250.
  • Kos S, Huegli R, Bongartz GM, et al. MR-guided endovascular interventions: a comprehensive review on techniques and applications. Eur Radiol. 2008;18:645–657.
  • Saeed M, Hetts SW, English J, et al. MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging. 2012;28:117–137.
  • Lufkin RB, Gronemeyer DHW, Seibel RMM Interventional MRI: update: Eur Radiol. 1997;7(S5):S187–S200.
  • Grönemeyer D, Seibel R, Erbel R, et al. Equipment configuration and procedures: preferences for interventional micro therapy. J Digit Imaging. 1996;9:81–96.
  • Mislow JMK, Golby AJ, Black PM Origins of Intraoperative MRI. Neurosurg Clin N Am. 2009;20:137–146.
  • Schenck JF, Jolesz FA, Roemer PB, et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology. 1995;195 (3):805–814
  • Azmi H, Gibbons M, DeVito MC, et al. The interventional magnetic resonance imaging suite: experience in the design, development, and implementation in a pre-existing radiology space and review of concepts. Surg Neurol Int. 2019;10:101.
  • Hall WA, Liu H, Martin AJ, et al. Intraoperative magnetic resonance imaging: Top Magn Reson Imaging. 2000;11:203–212.
  • Foroglou N, Zamani A, Black P Intra-operative MRI (iop-MR) for brain tumour surgery. Br J Neurosurg. 2009;23:14–22.
  • Albayrak B, Samdani AF, Black PM Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien). 2004;146:543–557.
  • Hoult DI, Saunders JK, Sutherland GR, et al. The engineering of an interventional MRI with a movable 1.5 Tesla magnet. J Magn Reson Imaging. 2001;13:78–86.
  • Sutherland GR, Kaibara T, Louw D, et al. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg. 1999;91:804–813.
  • Chen X, Xu B, Meng X, et al. Dual-room 1.5-T intraoperative magnetic resonance imaging suite with a movable magnet: implementation and preliminary experience. Neurosurg Rev. 2012;35:95–110.
  • Ntoukas V, Krishnan R, Seifert V The new generation polestar N20 for conventional neurosurgical operating rooms: a preliminary report. Oper Neurosurg. 2008;62:82–90.
  • White MJ, Thornton JS, Hawkes DJ, et al. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers: safety of single-room interventional MRI. J Magn Reson Imaging. 2015;41:34–43.
  • Faranesh AZ. The interventional MRI suite.Paper presented at: 24th Annual Meeting for the International Society of Magnetic Resonance in Medicine; 2016 May 07-13; Singapore.
  • Golshan M, Sagara Y, Wexelman B, et al. Pilot study to evaluate feasibility of image-guided breast-conserving therapy in the Advanced Multimodal Image-Guided Operating (AMIGO) suite. Ann Surg Oncol. 2014;21:3356–3357.
  • Narsinh KH, Kilbride BF, Mueller K, et al. Combined Use of X-ray angiography and intraprocedural MRI enables tissue-based decision making regarding revascularization during acute ischemic stroke intervention. Radiology. 2021;299:167–176.
  • Riederer SJ, Tasciyan T, Farzaneh F, et al. MR fluoroscopy: technical feasibility. Magn Reson Med. 1988;8:1–15.
  • Wright RC, Riederer SJ, Farzaneh F, et al. Real‐time MR fluoroscopic data acquisition and image reconstruction. Magn Reson Med. 1989;12:407–415.
  • Tsao J, Kozerke S MRI temporal acceleration techniques. J Magn Reson Imaging. 2012;36:543–560.
  • Santos JM, Wright GA, Pauly JM Flexible real-time magnetic resonance imaging framework. 26th Annu Int Conf IEEE Eng Med Biol Soc [Internet]. San Francisco CA: IEEE; 2004 [cited 2021 Oct 19]. p. 1048–1051. Available from: http://ieeexplore.ieee.org/document/1403343/.
  • Egger J, Tokuda J, Chauvin L, et al. Integration of the OpenIGTLink network protocol for image-guided therapy with the medical platform MeVisLab: integration of the OpenIGTLink protocol with the mevislab platform. Int J Med Robot. 2012;8:282–290.
  • Pintilie S, Biswas L, Anderson K, et al. Visualization software for real-time, image-guided therapeutics in cardiovascular interventions. CI2BM09 - MICCAI workshop cardiovasc interv imaging biophys model [Internet]. London: United Kingdom; 2009. p. 141–148. Available from: http://hal.inria.fr/inria-00417831.
  • Dominique F, Dupuis A, Gulani V, et al. Real-time acquisition, reconstruction and mixed-reality display system for 2D and 3D cardiac {MRI}. Proc Jt Annu Meet ISMRM-ESMRMB Paris Fr [Internet]. 2018. p. 598. Available from: http://indexsmart.mirasmart.com/ISMRM2018/PDFfiles/0598.html.
  • B J, V G, R C, et al. Robotic technology in cardiovascular medicine. Nat Rev Cardiol. 2014;11:266–275.
  • Reichert A, Bock M, Vogele M, et al. GantryMate: a modular MR-compatible assistance system for MR-guided needle interventions. Tomography. 2019;5:266–273.
  • Li G, Patel NA, Sharma K, et al. Body-mounted robotics for interventional MRI procedures. IEEE Trans Med Robot Bionics. 2020;2:557–560.
  • Cleary K, Lim S, Jun C, et al. Robotically assisted long bone biopsy under MRI imaging. Acad Radiol. 2018;25:74–81.
  • Kundrat D, Dagnino G, Kwok TMY, et al. An MR-safe endovascular robotic platform: design, control, and Ex-vivo evaluation. IEEE Trans Biomed Eng. 2021;68:3110–3121.
  • Abdelaziz MEMK, Tian L, Hamady M, et al. X-ray to MR: the progress of flexible instruments for endovascular navigation. Prog Biomed Eng. 2021;3:032004.
  • Nitz WR, Oppelt A, Renz W, et al. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001;13:105–114.
  • Martin AJ, Baek B, Acevedo-Bolton G, et al. MR imaging during endovascular procedures: an evaluation of the potential for catheter heating: catheter heating during MR scanning. Magn Reson Med. 2009;61:45–53.
  • Konings MK, Bartels LW, Smits HFM, et al. Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging. 2000;12:79–85.
  • Yeung CJ, Susil RC, Atalar E RF safety of wires in interventional MRI: using a safety index. Magn Reson Med. 2002;47:187–193.
  • Basar B, Rogers T, Ratnayaka K, et al. Segmented nitinol guidewires with stiffness-matched connectors for cardiovascular magnetic resonance catheterization: preserved mechanical performance and freedom from heating. J Cardiovasc Magn Reson. 2015;17:105.
  • Yildirim KD, Basar B, Campbell-Washburn AE, et al. A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance. J Cardiovasc Magn Reson. 2019;21:16.
  • Gall K, Yakacki CM, Liu Y, et al. Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A. 2005;73A:339–348.
  • Bell JA, Saikus CE, Ratnayaka K, et al. A deflectable guiding catheter for real-time MRI-guided interventions. J Magn Reson Imaging. 2012;35:908–915.
  • Lillaney P, Caton C, Martin AJ, et al. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI. Med Phys. 2014;41:022305.
  • ISO 10555-1:2013 Intravascular catheters — sterile and single-use catheters — part 1: general requirements. 2013.
  • ISO 11070:2014 Sterile single-use intravascular introducers, dilators and guidewires. 2014.
  • Massmann A, Buecker A, Schneider GK Glass-fiber–based MR-safe guidewire for MR imaging–guided endovascular interventions: in vitro and preclinical in vivo feasibility study. Radiology. 2017;284:541–551.
  • Kos S, Huegli R, Hofmann E, et al. First magnetic resonance imaging-guided aortic stenting and cava filter placement using a polyetheretherketone-based magnetic resonance imaging-compatible guidewire in swine: Proof Conc Cardiovasc Intervent Radiol. 2009;32:514–521.
  • Kos S, Huegli R, Hofmann E, et al. MR-compatible polyetheretherketone-based guide wire assisting MR-guided stenting of iliac and supraaortic arteries in swine: feasibility study. Minim Invasive Ther Allied Technol. 2009;18(3):181–188.
  • ASTM F2182 - 19e2 standard test method for measurement of radio frequency induced heating on or near passive implants during magnetic resonance imaging [Internet]. Available from: https://www.astm.org/Standards/F2182.htm
  • ASTM F2052 - 15 standard test method for measurement of magnetically induced displacement force on medical devices in the magnetic resonance environment [Internet]. Available from: https://www.astm.org/Standards/F2052.htm
  • ASTM F2119–07 (2013) Standard test method for evaluation of MR image artifacts from passive implants [Internet]. [cited 2021 Jun 1]. Available from: https://www.astm.org/Standards/F2119.htm.
  • Hushek SG, Russell L, Moser RF, et al. Safety Protocols for Interventional MRI1. Acad Radiol. 2005;12:1143–1148.
  • ASTM F2503 - 13 standard practice for marking medical devices and other items for safety in the magnetic resonance environment [Internet]. Available from: https://www.astm.org/f2503-13.html
  • Delfino JG, Woods TO New developments in standards for MRI safety testing of medical devices. Curr Radiol Rep. 2016;4:28.
  • Tzifa A, Krombach GA, Krämer N, et al. Magnetic resonance–guided cardiac interventions using magnetic resonance–compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010;3:585–592.
  • MaRVis [Internet]. [cited 2021 Oct 19]. Available from: http://www.marvistech.com
  • Li X, Perotti LE, Martinez JA , et al. Real-time 3T MRI-guided cardiovascular catheterization in a porcine model using a glass-fiber epoxy-based guidewire. PLoS One. 2020;15:e0229711.
  • Nano4Imaging [Internet]. [cited 2021 Oct 19]. Available from: http://www.nano4imaging.com.
  • Overall WR, Pauly JM, Stang PP, et al. Ensuring safety of implanted devices under MRI using reversed RF polarization: Magn Reson Med. 2010;64:823–833.
  • Etezadi-Amoli M, Stang P, Kerr A, et al. Interventional device visualization with toroidal transceiver and optically coupled current sensor for radiofrequency safety monitoring: transceiver and RF sensor for device visualization. Magn Reson Med. 2015;73:1315–1327.
  • Gudino N, Sonmez M, Yao Z, et al. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating: optimized pTX RF excitation for device heating minimization. Med Phys. 2014;42:359–371.
  • Ladd ME, Quick HH, Debatin JF Interventional MRA and intravascular imaging. J Magn Reson Imaging. 2000;12:534–546.
  • Weiss S, Vernickel P, Schaeffter T, et al. Transmission line for improved RF safety of interventional devices. Magn Reson Med. 2005;54:182–189.
  • Vernickel P, Schulz V, Weiss S, et al. A safe transmission line for MRI. IEEE Trans Biomed Eng. 2005;52:1094–1102.
  • Zanchi MG, Venook R, Pauly JM, et al. An optically coupled system for quantitative monitoring of MRI-induced RF currents into long conductors. IEEE Trans Med Imaging. 2010;29:169–178.
  • Yeung CJ, Susil RC, Atalar E RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field. Magn Reson Med. 2002;48:1096–1098.
  • Yeung CJ, Karmarkar P, McVeigh ER Minimizing RF heating of conducting wires in MRI. Magn Reson Med. 2007;58:1028–1034.
  • Campbell-Washburn AE, Rogers T, Stine AM, et al. Right heart catheterization using metallic guidewires and low SAR cardiovascular magnetic resonance fluoroscopy at 1.5 Tesla: first in human experience. J Cardiovasc Magn Reson. 2018;20:41.
  • Kolandaivelu A, Bruce CG, Ramasawmy R, et al. Native contrast visualization and tissue characterization of myocardial radiofrequency ablation and acetic acid chemoablation lesions at 0.55 T. J Cardiovasc Magn Reson. 2021;23(1):50.
  • Godinez F, Scott G, Padormo F, et al. Safe guidewire visualization using the modes of a PTx transmit array MR system. Magn Reson Med. 2020;83(6):2343–2355.
  • Wacker FK, Hillenbrand CM, Duerk JL, et al. MR-guided endovascular interventions: device visualization, tracking, navigation, clinical applications, and safety aspects. Magn Reson Imaging Clin N Am. 2005;13:431–439.
  • Settecase F, Martin AJ, Lillaney P, et al. Magnetic resonance–guided passive catheter tracking for endovascular therapy. Magn Reson Imaging Clin N Am. 2015;23:591–605.
  • Henk CB, Higgins CB, Saeed M Endovascular interventional MRI. J Magn Reson Imaging. 2005;22:451–460.
  • Patil S, Bieri O, Jhooti P, et al. Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE): passive Marker Tracking Using PRIDE. Magn Reson Med. 2009;62:935–942.
  • Buecker A, Neuerburg JM, Adam GB, et al. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Reson Imaging. 2000;12:616–622.
  • Buecker A, Adam GB, Neuerburg JM, et al. Simultaneous real-time visualization of the catheter tip and vascular anatomy for MR-guided PTA of iliac arteries in an animal model. J Magn Reson Imaging. 2002;16:201–208.
  • Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362:1877–1882.
  • Muthurangu V, Taylor A, Andriantsimiavona R, et al. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation. 2004;110:826–834.
  • Pushparajah K, Tzifa A, Bell A, et al. Cardiovascular magnetic resonance catheterization derived pulmonary vascular resistance and medium-term outcomes in congenital heart disease. J Cardiovasc Magn Reson. 2015;17:28.
  • Ratnayaka K, Faranesh AZ, Hansen MS, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013;34:380–389.
  • Dumoulin CL, Souza SP, Darrow RD Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29:411–415.*First demonstration of MRI tracking sequences of active markers.
  • Glowinski A, Kursch J, Adam G, et al. Device visualization for interventional MRI using local magnetic fields: basic theory and its application to catheter visualization. IEEE Trans Med Imaging. 1998;17:786–793.
  • Konings MK, Bartels LW, van Swol CFP, et al. Development of an MR-safe tracking catheter with a laser-driven tip coil. J Magn Reson Imaging. 2001;13:131–135.
  • Dumoulin CL, Mallozzi RP, Darrow RD, et al. Phase-field dithering for active catheter tracking. Magn Reson Med. 2010;63:1398–1403.
  • Ratnayaka K, Saikus CE, Faranesh AZ, et al. Closed-chest transthoracic magnetic resonance imaging-guided ventricular septal defect closure in swine. JACC Cardiovasc Interv. 2011;4:1326–1334.
  • Yildirim DK, Bruce C, Uzun D, et al. A 20‐gauge active needle design with thin‐film printed circuitry for interventional MRI at 0.55T. Magn Reson Med. 2021;86:1786–1801.
  • Chubb H, College London K, London UK, et al. Cardiac electrophysiology under MRI guidance: an emerging technology. Arrhythmia Electrophysiol Rev. 2017;6:85.*First in-human study demonstrating feasibility of active catheters.
  • Mukherjee RK, Roujol S, Chubb H, et al. Epicardial electroanatomical mapping, radiofrequency ablation, and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance—an in vivo feasibility study. EP Eur. 2018;20:f254–f262.
  • Dukkipati SR, Mallozzi R, Schmidt EJ, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance–based catheter tracking. Circulation. 2008;118:853–862.
  • Yaras YS, Yildirim DK, Herzka DA, et al. Real‐time device tracking under MRI using an acousto‐optic active marker. Magn Reson Med. 2021;85:2904–2914.
  • Krug J, Will K, Rose G Simulation and experimental validation of resonant electric markers used for medical device tracking in magnetic resonance imaging. 2010 Annu Int Conf IEEE Eng Med Biol [Internet]. Buenos Aires: IEEE; 2010 [cited 2021 Oct 19]. p. 1878–1881. Available from: http://ieeexplore.ieee.org/document/5627137/
  • Burl M, Coutts GA, Young IR Tuned fiducial markers to identify body locations with minimal perturbation of tissue magnetization. Magn Reson Med. 1996;36:491–493.
  • Rube MA, Holbrook AB, Cox BF, et al. Wireless MR tracking of interventional devices using phase-field dithering and projection reconstruction. Magn Reson Imaging. 2014;32:693–701.
  • Celik H, Ulutürk A, Talı T, et al. A catheter tracking method using reverse polarization for MR-guided interventions. Magn Reson Med. 2007;58:1224–1231.
  • Quick HH, Zenge MO, Kuehl H, et al. Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med. 2005;53:446–455.
  • Kuehne T, Fahrig R, Butts K Pair of resonant fiducial markers for localization of endovascular catheters at all catheter orientations. J Magn Reson Imaging. 2003;17:620–624.
  • Ellersiek D, Fassbender H, Bruners P, et al. A monolithically fabricated flexible resonant circuit for catheter tracking in magnetic resonance imaging☆. Sens Actuators B Chem. 2010;144:432–436.
  • Thorne B, Lillaney P, Losey A, et al. Micro Resonant marker for endovascular catheter tracking in interventional MRI: in vitro imaging at 3T. J Magn Reson Imaging Proc Intl Soc Reson Med. 2014;17:620–624.
  • Thorne B, Lillaney P, Losey A, et al. Omnidirectional MRI catheter resonator and related systems, methods, and devices.
  • Jordan CD, Thorne BRH, Wadhwa A, et al. Wireless resonant circuits printed using aerosol jet deposition for MRI catheter tracking. IEEE Trans Biomed Eng. 2020;67:876–882.
  • Kaiser M, Detert M, Rube MA, et al. Resonant marker design and fabrication techniques for device visualization during interventional magnetic resonance imaging. Biomed Eng Biomed Tech [Internet]. 2015 [cited 2021 Oct 19];60. Available from: https://www.degruyter.com/document/doi/.
  • Cheung C-L, Jd-l H, Vardhanabhuti V, et al. Design and fabrication of wireless multilayer tracking marker for intraoperative MRI-guided interventions. IEEEASME Trans Mech. 2020;25:1016–1025.
  • Muller L, Saeed M, Wilson MW, et al. Remote control catheter navigation: options for guidance under MRI. J Cardiovasc Magn Reson. 2012;14:33.*Review on remote controlled/steerable catheters.
  • Clogenson HCM, van Lith JY, Dankelman J, et al. Multi-selective catheter for MR-guided endovascular interventions. Med Eng Phys. 2015;37:623–630.
  • Gosselin FP, Lalande V, Martel S Characterization of the deflections of a catheter steered using a magnetic resonance imaging system: deflections of a catheter steered using MRI system. Med Phys. 2011;38:4994–5002.*First demonstration of a steerable catheter tipped with ferromagnetic spheres.
  • Heunis C, Sikorski J, Misra S Flexible instruments for endovascular interventions: improved magnetic steering, actuation, and image-guided surgical instruments. IEEE Robot Autom Mag. 2018;25:71–82.
  • Lillaney PV, Yang JK, Losey AD, et al. Endovascular MR-guided renal embolization by using a magnetically assisted remote-controlled catheter system. Radiology. 2016;281:219–228.
  • Hetts SW, Saeed M, Martin AJ, et al. Endovascular catheter for magnetic navigation under MR imaging guidance: evaluation of safety in vivo at 1.5T. Am J Neuroradiol. 2013;34:2083–2091.
  • Liu T, Poirot NL, Franson D, et al. Modeling and validation of the three-dimensional deflection of an MRI-compatible magnetically actuated steerable catheter. IEEE Trans Biomed Eng. 2016;63:2142–2154.
  • Liu T, Jackson R, Franson D, et al. Iterative Jacobian-based inverse kinematics and open-loop control of an MRI-guided magnetically actuated steerable catheter system. IEEEASME Trans Mech. 2017;22:1765–1776.
  • Gudino N, Heilman JA, Derakhshan JJ, et al. Control of intravascular catheters using an array of active steering coils: controllable catheter with an array of steering coils. Med Phys. 2011;38(7):4215–4224.
  • Mukherjee RK, Chubb H, Roujol S, et al. Advances in real-time MRI–guided electrophysiology. Curr Cardiovasc Imaging Rep. 2019;12:6.
  • Rasche V, Holz D, Köhler J, et al. Catheter tracking using continuous radial MRI. Magn Reson Med. 1997;37:963–968.
  • Rasche V, Proksa R, Sinkus R, et al. Resampling of data between arbitrary grids using convolution interpolation. IEEE Trans Med Imaging. 2002;18:385–392.
  • Schaeffter T, Weiss S, Eggers H, et al. Projection reconstruction balanced fast field echo for interactive real-time cardiac imaging. Magn Reson Med. 2001;46:1238–1241.
  • Bock M, Volz S, Zühlsdorff S, et al. MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils: real-time MRI for MR-guided interventions. J Magn Reson Imaging. 2004;19:580–589.
  • Martin AJ, Lillaney P, Saeed M, et al. Digital subtraction MR angiography roadmapping for magnetic steerable catheter tracking: digital Subtraction MR angiography roadmapping. J Magn Reson Imaging. 2015;41:1157–1162.
  • Zhang K, Maier F, Krafft AJ, et al. Tracking of an interventional catheter with a ferromagnetic tip using dual-echo projections. J Magn Reson. 2013;234:176–183.
  • Seppenwoolde J-H, Viergever MA, Bakker CJG Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med. 2003;50:784–790.
  • Velasco Forte MN, Pushparajah K, Schaeffter T, et al. Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterization using partial saturation (pSAT). J Cardiovasc Magn Reson. 2017;19:60.
  • Ratnayaka K, Faranesh AZ, Guttman MA, et al. Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson. 2008;10:62.
  • Campbell-Washburn AE, Tavallaei MA, Pop M, et al. Real-time MRI guidance of cardiac interventions: real-time cardiac MRI Interventions. J Magn Reson Imaging. 2017;46:935–950.
  • Ratnayaka K, Kanter JP, Faranesh AZ, et al. Radiation-free CMR diagnostic heart catheterization in children. J Cardiovasc Magn Reson. 2017;19:65.
  • Pushparajah K, Chubb H, Razavi R MR-guided Cardiac Interventions. Top Magn Reson Imaging. 2018;27:115–128.
  • Kuo L, Liang JJ, Han Y, et al. Association of septal late gadolinium enhancement on cardiac magnetic resonance with ventricular tachycardia ablation targets in nonischemic cardiomyopathy. J Cardiovasc Electrophysiol. 2020;31:3262–3276.
  • Lloyd DF, Van AJ, Murgasova M, et al. Insights from comprehensive fetal cardiovascular MRI assessment using 3D motion–correction and metric–optimised gated phase contrast in cases of suspected coarctation of the aorta. 2017. p. 3261.
  • Toupin S, Bour P, Lepetit-Coiffé M, et al. Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo. J Cardiovasc Magn Reson. 2017;19:14.
  • Sorensen TS, Atkinson D, Schaeffter T, et al. Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit. IEEE Trans Med Imaging. 2009;28:1974–1985.
  • Hansen MS, Sørensen TS Gadgetron: an open source framework for medical image reconstruction: gadgetron. Magn Reson Med. 2013;69:1768–1776.
  • Manke C, Nitz WR, Djavidani B, et al. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology. 2001;219:527–534.
  • Paetzel C, Zorger N, Bachthaler M, et al. Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest Radiol. 2005;40:257–262.
  • Fleg JL, Stone GW, Fayad ZA, et al. Detection of high-risk atherosclerotic plaque. JACC Cardiovasc Imaging. 2012;5:941–955.
  • Janowski M, Walczak P, Pearl MS Predicting and optimizing the territory of blood-brain barrier opening by superselective intra-arterial cerebral infusion under dynamic susceptibility contrast MRI guidance. J Cereb Blood Flow Metab Off. 2016;36:569–575.
  • Zawadzki M, Walecki J, Kostkiewicz B, et al. Real-time MRI guidance for intra-arterial drug delivery in a patient with a brain tumor: technical note. BMJ Case Rep. 2019;12:e014469.
  • Zawadzki M, Walecki J, Kostkiewicz B, et al. Follow-up of intra-arterial delivery of bevacizumab for treatment of butterfly glioblastoma in patient with first-in-human, real-time MRI-guided intra-arterial neurointervention. J Neurointerv Surg. 2021;13:1037–1039.
  • Martin AJ, Cha S, Higashida RT, et al. Assessment of vasculature of meningiomas and the effects of embolization with intra-arterial MR perfusion imaging: a feasibility study. Am J Neuroradiol. 2007;28:1771–1777.
  • Roosen J, Arntz MJ, Janssen MJR, et al. Development of an MRI-guided approach to selective internal radiation therapy using holmium-166 microspheres. Cancers (Basel). 2021;13:5462.
  • Chen SR, Chen MM, Ene C, et al. Perfusion-guided endovascular super-selective intra-arterial infusion for treatment of malignant brain tumors. J Neurointerv Surg. 2021;14:533–538.
  • Wang D, Gaba RC, Jin B, et al. Perfusion reduction at transcatheter intraarterial perfusion MR imaging: a promising intraprocedural biomarker to predict transplant-free survival during chemoembolization of hepatocellular carcinoma. Radiology. 2014;272:587–597.
  • Yang JK, Cote AM, Jordan CD, et al. Interventional magnetic resonance imaging guided carotid embolectomy using a novel resonant marker catheter: demonstration of preclinical feasibility. Biomed Microdevices. 2017;19:88.
  • Khatri P, Yeatts SD, Mazighi M, et al. Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: an analysis of data from the interventional management of stroke (IMS III) phase 3 trial. Lancet Neurol. 2014;13:567–574.
  • Fink C, Bock M, Umathum R, et al. Renal embolization: feasibility of magnetic resonance-guidance using active catheter tracking and intraarterial magnetic resonance angiography. Invest Radiol. 2004;39:111–119.
  • Seppenwoolde J-H, Bartels LW, van der Weide R, et al. Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging. 2006;23:123–129.
  • Raman VK, Karmarkar PV, Guttman MA, et al. Real-Time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol. 2005;45:2069–2077.
  • Mahnken AH, Chalabi K, Jalali F, et al. Magnetic resonance–guided placement of aortic stents grafts: feasibility with real-time magnetic resonance fluoroscopy. J Vasc Interv Radiol. 2004;15:189–195.
  • Eggebrecht H, Kühl H, Kaiser GM, et al. Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection. Eur Heart J. 2006;27:613–620.
  • Feng L, Dumoulin CL, Dashnaw S, et al. Transfemoral catheterization of carotid arteries with real-time MR imaging guidance in pigs. Radiology. 2005;234:551–557.
  • Elgort DR, Hillenbrand CM, Zhang S, et al. Image-guided and -monitored renal artery stenting using only MRI. J Magn Reson Imaging. 2006;23:619–627.
  • Omary RA, Gehl JA, Schirf BE, et al. MR Imaging– versus conventional X-ray fluoroscopy–guided renal angioplasty in swine: prospective randomized comparison. Radiology. 2006;238:489–496.
  • Bücker A, Neuerburg JM, Adam GB, et al. Real-time MR guidance for inferior vena cava filter placement in an animal model. J Vasc Interv Radiol. 2001;12:753–756.
  • Arepally A, Karmarkar PV, Qian D, et al. Evaluation of MR/fluoroscopy–guided portosystemic shunt creation in a swine model. J Vasc Interv Radiol. 2006;17:1165–1173.
  • Kee ST, Rhee JS, Butts K, et al. MR-guided transjugular portosystemic shunt placement in a swine model. J Vasc Interv Radiol. 1999;10:529–535.
  • Spuentrup E, Ruebben A, Schaeffter T, et al. Magnetic resonance–guided coronary artery stent placement in a swine model. Circulation. 2002;105:874–879.
  • Serfaty J-M, Yang X, Foo TK, et al. MRI-guided coronary catheterization and PTCA: a feasibility study on a dog model. Magn Reson Med. 2003;49:258–263.
  • Kuehne T, Saeed M, Higgins CB, et al. Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR imaging–guided deployment and postinterventional assessment. Radiology. 2003;226:475–481.
  • Krueger JJ, Ewert P, Yilmaz S, et al. Magnetic resonance imaging–guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation. 2006;113:1093–1100.
  • Kuehne T, Yilmaz S, Meinus C, et al. Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: J Am Coll Cardiol. 2004;44:2247–2249.
  • Buecker A, Spuentrup E, Grabitz R, et al. Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale. Circulation. 2002;106:511–515.
  • Ewert P, Berger F, Daehnert I, et al. Transcatheter closure of atrial septal defects without fluoroscopy: feasibility of a new method. Circulation. 2000;101:847–849.
  • Walczak P, Wojtkiewicz J, Nowakowski A, et al. Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. J Cereb Blood Flow Metab Off. 2017;37:2346–2358.
  • Chu C, Liu G, Janowski M, et al. Real-time MRI guidance for reproducible hyperosmolar opening of the blood-brain barrier in mice. Front Neurol. 2018;9:921.
  • Chu C, Jablonska A, Lesniak WG, et al. Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. J Control Release Off J Control Release Soc. 2020;317:312–321.
  • Chu C, Jablonska A, Gao Y, et al. Hyperosmolar blood-brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nat Protoc. 2022;17:76–94.
  • Song X, Walczak P, He X, et al. Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion. J Cereb Blood Flow Metab Off. 2016;36:1186–1194.
  • Liu H, Jablonska A, Li Y, et al. Label-free CEST MRI detection of citicoline-liposome drug delivery in ischemic stroke. Theranostics. 2016;6:1588–1600.
  • Chen L, Liu J, Chu C, et al. Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics. 2021;11:6240–6250.
  • Hall WA, Kowalik K, Liu H, et al. Costs and benefits of intraoperative MR-guided brain tumor resection. In: Bernays RL, Imhof H-G, Yonekawa Y, editors. Intraoperative Imaging Neurosurg [Internet]. Vienna: Springer Vienna; 2003 [cited 2022 Feb 9]. p. 137–142. Available from: http://link.springer.com/.
  • Pooler BD, Hernando D, Reeder SB Clinical implementation of a focused MRI protocol for hepatic fat and iron quantification. Am J Roentgenol. 2019;213:90–95.
  • van Beek EJR, Kuhl C, Anzai Y, et al. Value of MRI in medicine: more than just another test? J Magn Reson Imaging. 2019;49:e14–e25.
  • Thompson SM, Gorny KR, Koepsel EMK, et al. Body interventional MRI for diagnostic and interventional radiologists: current practice and future prospects. RadioGraphics. 2021;41:1785–1801.**Current, in-depth review of interventional MRI techniques, technology, safety considerations, and applications in body interventional radiology.
  • Bhat SS, Fernandes TT, Poojar P, et al. Low‐field MRI of stroke: challenges and opportunities. J Magn Reson Imaging. 2021;54:372–390.
  • Ciske BR, Speidel MA, Raval AN Improving the cardiac cath-lab interventional imaging eco-system. Transl Pediatr. 2018;7(1):1–4.
  • Gao X, Navkar NV, Shah DJ, et al. Intraoperative registration of preoperative 4D cardiac anatomy with real-time MR images. 2012 IEEE 12th Int Conf Bioinforma Bioeng BIBE [Internet]. Larnaca, Cyprus: IEEE; 2012 [cited 2021 Nov 15]. p. 583–588. Available from: http://ieeexplore.ieee.org/document/6399737/
  • Bottomley PA Barriers to technology translation in magnetic resonance to medicine. Magn Reson Mater Phys Biol Med. 2021;34:643–647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.