182
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development

, , , , , & show all
Pages 557-573 | Received 23 Mar 2023, Accepted 23 May 2023, Published online: 29 May 2023

References

  • Buser D, Janner SFM, Wittneben JG, et al. 10-Year Survival and success rates of 511 titanium implants with a sandblasted and acid-Etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012;14(6):839–851. DOI:10.1111/j.1708-8208.2012.00456.x
  • Howe MS, Keys W, Richards D. Long-term (10-year) dental implant survival: a systematic review and sensitivity meta-analysis. J Dent. 2019;84:9–21.
  • Frisch E, Wild V, Ratka-Krüger P, et al. Long-term results of implants and implant-supported prostheses under systematic supportive implant therapy: a retrospective 25-year study. Clin Implant Dent Relat Res. 2020;22:689–696.
  • Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10(6):387–416. DOI:10.1016/S0300-9785(81)80077-4
  • de Avila ED, Nagay BE, Pereira MMA, et al. Race for applicable antimicrobial dental implant surfaces to fight biofilm-related disease: advancing in Laboratorial Studies vs Stagnation in Clinical Application. ACS Biomater Sci Eng. 2022;8(8):3187–3198. DOI:10.1021/acsbiomaterials.2c00160
  • Sailer I, Karasan D, Todorovic A, et al. Prosthetic failures in dental implant therapy. Periodontol. 2000;88(1):130–144. DOI:10.1111/prd.12416
  • Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol. 2000;86(1):231–240.
  • Berglundh T, Armitage G, Araujo MG, et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;45:S286–S291.
  • Schwarz F, Derks J, Monje A, et al. Peri-implantitis. J Clin Periodontol. 2018;45:S246–S266.
  • Sgolastra F, Petrucci A, Severino M, et al. Periodontitis, implant loss and peri-implantitis: a meta-analysis. Clin Oral Impl Res. 2015;26(4):e8–e16. DOI:10.1111/clr.12319
  • Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci. 2011;161(1–2):87–106.
  • Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397–409.
  • Lasserre JF, Michel B, Selena T. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials. 2018;11(10):1802.
  • Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontol. 2011;55(1):16–35.
  • Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of periimplant diseases. J Dent Res. 2017;96(1):31–37.
  • Tarnow DP. Increasing prevalence of peri-implantitis: how will we manage? J Dent Res. 2016;95(1):7–8.
  • Derks J, Tomasi C. Peri-implant health and disease. a systematic review of current epidemiology. J Clin Periodontol. 2015;42:S158–S171.
  • Romandini M, Lima C, Pedrinaci I, et al. Prevalence and risk/protective indicators of peri-implant diseases: a university-representative crosssectional study. Clin Oral Implants Res. 2021;32(1):112–122. DOI:10.1111/clr.13684
  • Cosgarea R, Sculean A, Shibli JA, et al. Prevalence of peri-implant diseases – a critical review on the current evidence. Braz Oral Res. 2019;33(suppl 1):e063. DOI:10.1590/1807-3107bor-2019.vol33.0063
  • Ramanauskaite A, Fretwurst T, Schwarz F. Efficacy of alternative or adjunctive measures to conventional non-surgical and surgical treatment of peri-implant mucositis and peri-implantitis: a systematic review and meta-analysis. Int J Implant Dent. 2021;7(1):112.
  • de Almeida JM, Matheus HR, Rodrigues Gusman DJ, et al. Effectiveness of mechanical debridement combined with adjunctive therapies for nonsurgical treatment of periimplantitis: a systematic review. Implant Dent. 2017;6(1):137–144. DOI:10.1097/ID.0000000000000469
  • Toledano M, Osorio MT, Vallecillo-Rivas M, et al. Efficacy of local antibiotic therapy in the treatment of peri-implantitis: a systematic review and metaanalysis. J Dent. 2021;113:103790.
  • Shibli JA, Ferrari DS, Siroma RS, et al. Microbiological and clinical effects of adjunctive systemic metronidazole and amoxicillin in the non-surgical treatment of peri-implantitis: 1 year follow-up. Braz Oral Res. 2019;33(suppl 1):e080. DOI:10.1590/1807-3107bor-2019.vol33.0080
  • Costa RC, Nagay BE, Bertolini M, et al. Fitting pieces into the puzzle: the impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci. 2021;298:102551.
  • Albrektsson T, Jemt T, Mölne J, et al. On inflammation-immunological balance theory—A critical apprehension of disease concepts around implants: mucositis and marginal bone loss may represent normal conditions and not necessarily a state of disease. Clin Implant Dent Relat Res. 2019;21(1):183–189. DOI:10.1111/cid.12711
  • Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol. 2017;73(1):7–21.
  • Souza JGS, Bertolini M, Costa RC, et al. Proteomic profile of the saliva and plasma protein layer adsorbed on Ti–Zr alloy: the effect of sandblasted and acid-etched surface treatment. Biofouling. 2020;36:428–441.
  • Pantaroto HN, Amorim KP, Matozinho Cordeiro J, et al. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. Biofouling. 2019;35:173–186.
  • Souza JGS, Bertolini M, Costa RC, et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface. ACS Appl Mater Interfaces. 2020;12(9):10118–10129. DOI:10.1021/acsami.9b22741
  • Belibasakis GN, Manoil D. Microbial community-driven etiopathogenesis of peri-implantitis. J Dent Res. 2021;100(1):21–28.
  • Mombelli A, Décaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol. 2011;38(11):203–213.
  • William Costerton J, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49(1):711–745. DOI:10.1146/annurev.mi.49.100195.003431
  • Karygianni L, Ren Z, Koo H, et al. Biofilm Matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681. DOI:10.1016/j.tim.2020.03.016
  • Costa RC, Bertolini M, Costa Oliveira BE, et al. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit Rev Microbiol. 2022;18:8–21.
  • Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96–104.
  • Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81:7–11.
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–633.
  • Coli P, Jemt T. Are marginal bone level changes around dental implants due to infection? Clin Implant Dent Relat Res. 2021;23:170–177.
  • Souza JGS, Mendonça Bertolini M, Cavalcante Costa R, et al. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience. 2020;24(1):102008. DOI:10.1016/j.isci.2020.102008
  • Corrêa MG, Pimentel SP, Ribeiro FV, et al. Host response and periimplantitis. Braz Oral Res. 2019;33(suppl 1):e066. DOI:10.1590/1807-3107bor-2019.vol33.0066
  • Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2014;64(1):57–80. DOI:10.1111/prd.12002
  • Souza JG, Costa RC, Sampaio AA, et al. Cross-kingdom microbial interactions in dental implant-related infections: is Candida albicans a new villain? iScience. 2022;25(4):103994. DOI:10.1016/j.isci.2022.103994
  • Ravidà A, Siqueira R, Di Gianfilippo R, et al. Prognostic factors associated with implant loss, disease progression or favorable outcomes after periimplantitis surgical therapy. Clin Implant Dent Relat Res. 2022;24(2):222–232. DOI:10.1111/cid.13074
  • Karlsson K, Derks J, Håkansson J, et al. Interventions for peri-implantitis and their effects on further bone loss: a retrospective analysis of a registrybased cohort. J Clin Periodontol. 2019;46(8):872–879. DOI:10.1111/jcpe.13129
  • Vilarrasa J, Soldini MC, Pons R, et al. Outcome indicators of non-surgical therapy of peri-implantitis: a prospective case series analysis. Clin Oral Investig. 2023. DOI:10.1007/s00784-023-04918-2
  • Al-Hashedi AA, Laurenti M, Benhamou V, et al. Decontamination of titanium implants using physical methods. Clin Oral Impl Res. 2017;28(8):1013–1021. DOI:10.1111/clr.12914
  • Vyas N, Grewal M, Kuehne SA, et al. High speed imaging of biofilm removal from a dental implant model using ultrasonic cavitation. Dental Materials. 2020;36:733–743.
  • John G, Becker J, Schwarz F. Rotating titanium brush for plaque removal from rough titanium surfaces - an in vitro study. Clin Oral Impl Res. 2014;25(7):838–842.
  • Drago L, Del Fabbro M, Bortolin M, et al. Biofilm Removal and Antimicrobial Activity of Two Different Air-Polishing Powders: an in vitro Study. J Periodontol. 2014;85(11):e363–e369. DOI:10.1902/jop.2014.140134
  • Polak D, Shani-Kdoshim S, Alias M, et al. The in vitro efficacy of biofilm removal from titanium surfaces using Er: yAG laser: comparison of treatment protocols and ablation parameters. J Periodontol. 2022;93(1):100–109. DOI:10.1002/JPER.19-0574
  • Bassetti M, Schär D, Wicki B, et al. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin Oral Impl Res. 2014;25(3):279–287. DOI:10.1111/clr.12155
  • Cordeiro JM, Pires JM, Souza JGS, et al. Optimizing citric acid protocol to control implant-related infections: an in vitro and in situ study. J Periodontal Res. 2021;56(3):558–568. DOI:10.1111/jre.12855
  • Faggion CM, Listl S, Frühauf N, et al. A systematic review and Bayesian network meta-analysis of randomized clinical trials on non-surgical treatments for peri-implantitis. J Clin Periodontol. 2014;41:1015–1025.
  • Del Amo F S-L, Yu S-H, Wang H-L. Non-surgical therapy for periimplant diseases: a systematic review. J Oral Maxillofac Res. 2016;7(3):e13.
  • Carcuac O, Derks J, Abrahamsson I, et al. Surgical treatment of periimplantitis: 3-year results from a randomized controlled clinical trial. J Clin Periodontol. 2017;44(12):1294–1303. DOI:10.1111/jcpe.12813
  • Carcuac O, Derks J, Abrahamsson I, et al. Risk for recurrence of disease following surgical therapy of peri-implantitis—A prospective longitudinal study. Clin Oral Implants Res. 2020;31(11):1072–1077. DOI:10.1111/clr.13653
  • Esposito M, Grusovin MG, v WH, Interventions for replacing missing teeth: treatment of peri-implantitis. Cochrane Database Syst Rev. 2012;1:CD004970. DOI:10.1002/14651858.CD004970.pub5
  • Zandim-Barcelos DL, de CG, Sapata VM, et al. Implant-based factor as possible risk for peri-implantitis. Braz Oral Res. 2019;33(1):e067. DOI:10.1590/1807-3107bor-2019.vol33.0067
  • Gay NJ, Symmons MF, Gangloff M, et al. Assembly and localization of Tolllike receptor signalling complexes. Nat Rev Immunol. 2014;14(8):546–558. DOI:10.1038/nri3713
  • Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev. 2022;314:93–110. DOI:10.1111/imr.13152
  • Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74(3):391–401.
  • Faot F, Nascimento GG, Bielemann AM, et al. Can peri-implant crevicular fluid assist in the diagnosis of peri-implantitis? A systematic review and meta-analysis. J Periodontol. 2015;86(5):631–645. DOI:10.1902/jop.2015.140603
  • Fonseca FJPO, Junior MM, Lourenço EJV, et al. Cytokines expression in saliva and peri-implant crevicular fluid of patients with peri-implant disease. Clin Oral Impl Res. 2014;25(2):e68–e72. DOI:10.1111/clr.12052
  • Meyer S, Giannopoulou C, Courvoisier D, et al. Experimental mucositis and experimental gingivitis in persons aged 70 or over. Clinical and biological responses. Clin Oral Impl Res. 2017;28(8):1005–1012. DOI:10.1111/clr.12912
  • Mardegan GP, Shibli JA, Roth LA, et al. Transforming growth factor-β, interleukin-17, and IL-23 gene expression profiles associated with human peri-implantitis. Clin Oral Impl Res. 2017;28(7):e10–e15. DOI:10.1111/clr.12846
  • Casado PL, Canullo L, de Almeida Filardy A, et al. Interleukins 1 β and 10 expressions in the periimplant crevicular fluid from patients with untreated periimplant disease. Implant Dent. 2013;22(2):143–150. DOI:10.1097/ID.0b013e3182818792
  • Güncü GN, Akman AC, Günday S, et al. Effect of inflammation on cytokine levels and bone remodelling markers in peri-implant sulcus fluid: a preliminary report. Cytokine. 2012;59:313–316.
  • Schminke B, Vom Orde F, Gruber R, et al. The pathology of bone tissue during peri-implantitis. J Dent Res. 2015;94:354–361.
  • Arakawa H, Uehara J, Hara ES, et al. Matrix metalloproteinase-8 is the major potential collagenase in active peri-implantitis. J Prosthodont Res. 2012;56(4):249–255. DOI:10.1016/j.jpor.2012.07.002
  • Kivelä-Rajamäki M, Maisi P, Srinivas R, et al. Levels and molecular forms of MMP-7 (matrilysin-1) and MMP-8 (collagenase-2) in diseased human peri-implant sulcular fluid. J Periodontal Res. 2003;38(6):583–590. DOI:10.1034/j.1600-0765.2003.00688.x
  • Sorsa T, Mäntylä P, Rönkä H, et al. Scientific basis of a matrix metalloproteinase-8 specific chair-side test for monitoring periodontal and peri-implant health and disease. Ann N Y Acad Sci. 1999;878:130–140.
  • Al-Majid A, Alassiri S, Rathnayake N, et al. Matrix metalloproteinase-8 as an inflammatory and prevention biomarker in periodontal and peri-implant diseases. Int J Dent. 2018;2018:1–27.
  • Xanthopoulou V, Räisänen I, Sorsa T, et al. Active MMP-8 as a biomarker of peri-implant health or disease. Eur J Dent. 2022;1753454. DOI:10.1055/s-0042-1753454
  • Fretwurst T, Garaicoa-Pazmino C, Nelson K, et al. Characterization of macrophages infiltrating peri-implantitis lesions. Clin Oral Implants Res. 2020;31(3):274–281. DOI:10.1111/clr.13568
  • Dreyer H, Grischke J, Tiede C, et al. Epidemiology and risk factors of periimplantitis: a systematic review. J Periodontal Res. 2018;53(5):657–681. DOI:10.1111/jre.12562
  • Venza I, Visalli M, Cucinotta M, et al. Proinflammatory gene expression at chronic periodontitis and peri-implantitis sites in patients with or without type 2 diabetes. J Periodontol. 2010;81(1):99–108. DOI:10.1902/jop.2009.090358
  • Negri BM, Pimentel SP, Casati MZ, et al. Impact of a chronic smoking habit on the osteo-immunoinflammatory mediators in the peri-implant fluid of clinically healthy dental implants. Arch Oral Biol. 2016;70:55–61.
  • Alqahtani F, Alqhtani N, Alkhtani F, et al. Clinicoradiographic markers of peri-implantitis in cigarette-smokers and never-smokers with type 2 diabetes mellitus at 7-years follow-up. J Periodontol. 2020;91:1132–1138.
  • Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res. 2015;94(8):1027–1034.
  • Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. Br Dent J. 2015;218(5):e9.
  • De Bruyn H, Christiaens V, Doornewaard R, et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol. 2017;73(1):218–227. DOI:10.1111/prd.12177
  • Matos GRM. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg. 2021;20(1):1–4.
  • Rigolin MSM, de Avila ED, Basso FG, et al. Effect of different implant abutment surfaces on OBA-09 epithelial cell adhesion. Microsc Res Tech. 2017;80(12):1304–1309. DOI:10.1002/jemt.22941
  • Rupp F, Liang L, Geis-Gerstorfer J, et al. Surface characteristics of dental implants: a review. Dental Mater. 2018;34(1):201840–201857. DOI:10.1016/j.dental.2017.09.007
  • Andrukhov O, Huber R, Shi B, et al. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dental Mater. 2016;32(11):1374–1384. DOI:10.1016/j.dental.2016.08.217
  • Zhang Y, Chen SE, Shao J, et al. Combinatorial surface roughness effects on osteoclastogenesis and osteogenesis. ACS Appl Mater Interfaces. 2018;10(43):36652–36663. DOI:10.1021/acsami.8b10992
  • Fernandes KR, Zhang Y, Magri AMP, et al. Biomaterial property effects on platelets and macrophages: an in vitro Study. ACS Biomater Sci Eng. 2017;3(12):3318–3327. DOI:10.1021/acsbiomaterials.7b00679
  • Costa RC, Nagay BE, Dini C, et al. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci. 2023;311:102805.
  • Puckett SD, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–713.
  • Rupp F, Gittens RA, Scheideler L, et al. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 2014;10(7):2894–2906. DOI:10.1016/j.actbio.2014.02.040
  • Terada A, Okuyama K, Nishikawa M, et al. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnol Bioeng. 2012;109(7):1745–1754. DOI:10.1002/bit.24429
  • Hori N, Ueno T, Minamikawa H, et al. Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater. 2010;6(10):4175–4180. DOI:10.1016/j.actbio.2010.05.006
  • Iwasa F, Hori N, Ueno T, et al. Enhancement of osteoblast adhesion to UVphotofunctionalized titanium via an electrostatic mechanism. Biomaterials. 2010;31(10):2717–2727. DOI:10.1016/j.biomaterials.2009.12.024
  • Kügler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology. 2005;151:1341–1348.
  • Nagay BE, Cordeiro JM, Barao VAR. Insight into corrosion of dental implants: from biochemical mechanisms to designing corrosion-resistant materials. Curr Oral Health Rep. 2022;9(2):7–21. DOI:10.1007/s40496-022-00306-z
  • Costa RC, Abdo VL, Mendes PHC, et al. Microbial corrosion in titaniumbased dental implants: how tiny bacteria can create a big problem? J Bio Tribocorros. 2021;7(4):136. DOI:10.1007/s40735-021-00575-8
  • Wheelis SE, Gindri IM, Valderrama P, et al. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition, and roughness. Clin Oral Impl Res. 2016;27(3):329–340. DOI:10.1111/clr.12545
  • Mabilleau G, Bourdon S, Joly-Guillou ML, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006;2(1):121–129. DOI:10.1016/j.actbio.2005.09.004
  • Dini C, Costa RC, Sukotjo C, et al. Progression of bio-tribocorrosion in implant dentistry. Front Mech Eng. 2020;6:6.
  • Zuo R. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol. 2007;76(6):1245–1253.
  • Asa’ad F, Thomsen P, Kunrath MF. The Role of Titanium Particles and Ions in the Pathogenesis of Peri-Implantitis. J Bone Metab. 2022;29(3):145–154.
  • Souza JGS, Costa Oliveira BE, Bertolini M, et al. Titanium particles and ions favor dysbiosis in oral biofilms. J Periodontal Res. 2020;55(2):258–266. DOI:10.1111/jre.12711
  • Barão VAR, Yoon CJ, Mathew MT, et al. Attachment of porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy. J Periodontol. 2014;85(9):1275–1282. DOI:10.1902/jop.2014.130595
  • Pettersson M, Kelk P, Belibasakis GN, et al. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J Periodontal Res. 2017;52(1):21–32. DOI:10.1111/jre.12364
  • Wachi T, Shuto T, Shinohara Y, et al. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology. 2015;327:1–9.
  • Freitag L, Spinell T, Kröger A, et al. Dental implant material related changes in molecular signatures in peri-implantitis – a systematic review and integrative analysis of omics in-vitro studies. Dental Materials. 2023;39:101–113.
  • Stolzer C, Müller M, Gosau M, et al. Do titanium dioxide particles stimulate macrophages to release proinflammatory cytokines and increase the risk for peri-implantitis? J Oral Maxillofacial Surg. 2023;81(3):308–317. DOI:10.1016/j.joms.2022.10.019
  • Jiang R, Yi Y, Hao L, et al. Thermoresponsive nanostructures: from mechano-bactericidal action to bacteria release. ACS Appl Mater Interfaces. 2021;13(51):60865–60877. DOI:10.1021/acsami.1c16487
  • Cao Y, Su B, Chinnaraj S, et al. Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation. Sci Rep. 2018;8(1):1071. DOI:10.1038/s41598-018-19484-x
  • Lin WT, Tan HL, Duan ZL, et al. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Int J Nanomedicine. 2014;9:1215–1230.
  • Verza BS, van den Beucken JJJP, Brandt JV, et al. A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydr Polym. 2021;257:117604.
  • van Oirschot BAJA, Zhang Y, Alghamdi HS, et al. Surface engineering for dental implantology: favoring tissue responses along the implant. Tissue Eng Part A. 2022;28(11–12):555–572. DOI:10.1089/ten.tea.2021.0230
  • Alkekhia D, Hammond PT, Shukla A. Layer-by-Layer biomaterials for drug delivery. Annu Rev Biomed Eng. 2020;22(1):1–24.
  • Yu J, Zhou M, Zhang L, et al. Antibacterial adhesion strategy for dental titanium implant surfaces: from mechanisms to application. J Funct Biomater. 2022;13(4):169. DOI:10.3390/jfb13040169
  • Maan AMC, Hofman AH, de Vos WM, et al. Recent developments and practical feasibility of polymer-based antifouling coatings. Adv Funct Mater. 2020;30(32):2000936. DOI:10.1002/adfm.202000936
  • Han B, Fang J, Yang Z, et al. Pegylated coating affects DBM osteoinductivity in vivo by changing inflammatory responses. ACS Appl Bio Mater. 2020;3(12):8722–8730. DOI:10.1021/acsabm.0c01113
  • Li B, Xia X, Guo M, et al. Biological and antibacterial properties of the micronanostructured hydroxyapatite/chitosan coating on titanium. Sci Rep. 2019;9(1):14052. DOI:10.1038/s41598-019-49941-0
  • Hu X, Neoh KG, Shi Z, et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials. 2010;31:8854–8863.
  • Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54.
  • Linklater DP, Baulin VA, Juodkazis S, et al. Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol. 2021;19(1):8–22. DOI:10.1038/s41579-020-0414-z
  • Younas H, Fei Y, Shao J, et al. Developing an antibacterial superhydrophilic barrier between bacteria and membranes to mitigate the severe impacts of biofouling. Biofouling. 2016;32(9):1089–1102. DOI:10.1080/08927014.2016.1229775
  • Lee SW, Phillips KS, Gu H, et al. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials. 2021;268:120595.
  • Barão VAR, Costa RC, Shibli JA, et al. Emerging titanium surface modifications: the war against polymicrobial infections on dental implants. Braz Dent J. 2022;33(1):1–12. DOI:10.1590/0103-6440202204860
  • Truong VK, Webb HK, Fadeeva E, et al. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling. 2012;28:539–550.
  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol. 2011;2:152–161.
  • Zhang X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013;3(30):12003–12020.
  • Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small. 2012;8:2489–2494.
  • Li X. Bactericidal mechanism of nanopatterned surfaces. Phys Chem Chem Phys. 2015;18(2):1311–1316.
  • P B, V U. In Vitro bioactivity, biocompatibility and corrosion resistance of multi-ionic (Ce/Si) co-doped hydroxyapatite porous coating on Ti-6Al-4 V for bone regeneration applications. Mater Sci Eng C. 2021;119:111620.
  • Chen WC, Ko CL. Roughened titanium surfaces with silane and further RGD peptide modification in vitro. Mater Sci Eng C. 2013;33(5):2713–2722.
  • Suo L, Jiang N, Wang Y, et al. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J Biomed Mater Res. 2019;107(3):635–645. DOI:10.1002/jbm.b.34156
  • Cordeiro JM, Nagay BE, Dini C, et al. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. Mater Sci Eng C. 2021;134:112550.
  • Yang C, Li J, Zhu C, et al. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity. Acta Biomater. 2019;89:403–418.
  • Crespi R, Marconcini S, Crespi G, et al. Nonsurgical treatment of periimplantitis without eliminating granulation tissue: a 3-year study. Implant Dent. 2019;28(1):4–10. DOI:10.1097/ID.0000000000000832
  • Carcuac O, Derks J, Charalampakis G, et al. Adjunctive systemic and local antimicrobial therapy in the surgical treatment of peri-implantitis: a randomized controlled clinical trial. J Dent Res. 2016;95:50–57.
  • Javed F, Alghamdi AST, Ahmed A, et al. Clinical efficacy of antibiotics in the treatment of peri-implantitis. Int Dent J. 2013;63(4):169–176. DOI:10.1111/idj.12034
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655.
  • Akshaya S, Rowlo PK, Dukle A, et al. Antibacterial coatings for titanium implants: recent trends and future perspectives. Antibiotics. 2022;11(12):1719. DOI:10.3390/antibiotics11121719
  • de Avila ED, Castro AGB, Tagit O, et al. Anti-bacterial efficacy via drug delivery system from layer-by-layer coating for percutaneous dental implant components. Appl Surf Sci. 2019;488:194–204.
  • Shivaram A, Bose S, Bandyopadhyay A. Understanding long-term silver release from surface modified porous titanium implants. Acta Biomater. 2017;58:550–560.
  • Zhang X, Li C, Yu Y, et al. Characterization and property of bifunctional Zn incorporated TiO2 micro-arc oxidation coatings: the influence of different Zn sources. Ceram Int. 2019;45(16):19747–19756. DOI:10.1016/j.ceramint.2019.06.228
  • Thainan D, Mendes SL, Reis G, et al. Does the incorporation of zinc into TiO 2 on titanium surfaces increase bactericidal activity? A systematic review and meta-analysis; 2022. DOI:10.1016/j.prosdent.2022.05.007
  • Santos-Coquillat A, Mohedano M, Martinez-Campos E, et al. Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Mater Sci Eng C. 2019;97:738–752.
  • Odatsu T, Kuroshima S, Sato M, et al. Antibacterial properties of nano-Ag coating on healing abutment: an in vitro and clinical study. Antibiotics. 2020;9:1–11.
  • Carinci F, Lauritano D, Bignozzi CA, et al. A new strategy against periimplantitis: antibacterial internal coating. Int J Mol Sci. 2019;20(16):3897. DOI:10.3390/ijms20163897
  • Souza JGS, Lima CV, Costa Oliveira BE, et al. Dose-response effect of chlorhexidine on a multispecies oral biofilm formed on pure titanium and on a titanium-zirconium alloy. Biofouling. 2018;34:1175–1184.
  • Matos AO, de Almeida AB, Beline T, et al. Synthesis of multifunctional chlorhexidine-doped thin films for titanium-based implant materials. Mater Sci Eng C. 2020;117:111289.
  • Riool M, Dirks AJ, Jaspers V, et al. A chlorhexidine-releasing epoxy-based coating on titanium implants prevents Staphylococcus aureus experimental biomaterial-associated infection. Eur Cell Mater. 2017;33:143–157.
  • Negut I, Bita B, Groza A. Polymeric coatings and antimicrobial peptides as efficient systems for treating implantable medical devices associatedinfections. Polymers. 2022;14(8):1611.
  • Riool M, de Breij A, Drijfhout JW, et al. Antimicrobial peptides in biomedical device manufacturing. Front Chem. 2017;5:63.
  • Zarghami V, Ghorbani M, Pooshang Bagheri K, et al. Melittin antimicrobial peptide thin layer on bone implant chitosan-antibiotic coatings and their bactericidal properties. Mater Chem Phys. 2021;5:263.
  • Chen J, Shi X, Zhu Y, et al. On-demand storage and release of antimicrobial peptides using Pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics. 2020;10(1):109–122. DOI:10.7150/thno.38388
  • Zhou L, Lai Y, Huang W, et al. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. Colloids Surf B Biointerfaces. 2015;128:552–560.
  • Miao Q, Sun JL, Huang F, et al. Antibacterial peptide HHC-36 sustained release coating promotes antibacterial property of percutaneous implant. Front Bioeng Biotechnol. 2021;9:735889.
  • Li K, Chen J, Xue Y, et al. Polymer brush grafted antimicrobial peptide on hydroxyapatite nanorods for highly effective antibacterial performance. Chem Eng J. 2021;423:130133.
  • Bellotti D, Remelli M. Lights and shadows on the therapeutic use of antimicrobial peptides. Molecules. 2022;27(14):4584.
  • Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing? J Dent Res. 2015;94(12):1628–1637.
  • Dong Y, Ye H, Liu Y, et al. pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic approach to control peri-implant infection. Colloids Surf B Biointerfaces. 2017;158:127–136.
  • Yang Y, Jiang X, Lai H, et al. Smart bacteria-responsive drug delivery systems in medical implants. J Funct Biomater. 2022;13(4):173. DOI:10.3390/jfb13040173
  • Choi H, Schulte A, Müller M, et al. Drug release from thermo-responsive polymer brush coatings to control bacterial colonization and biofilm growth on titanium implants. Adv Healthc Mater. 2021;10(11):e2100069. DOI:10.1002/adhm.202100069
  • Zhao J, Xu J, Jian X, et al. NIR light-driven photocatalysis on amphip 2 nanotubes for controllable drug release. ACS Appl Mater Interfaces. 2020;12(20):23606–23616. DOI:10.1021/acsami.0c04260
  • Nagay BE, Dini C, Cordeiro JM, et al. Visible-light-induced photocatalytic and antibacterial activity of TiO2 codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases. ACS Appl Mater Interfaces. 2019;11(20):18186–18202. DOI:10.1021/acsami.9b03311
  • Khudhair D, Bhatti A, Li Y, et al. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater Sci Eng C. 2016;59:1125–1142.
  • Feng W, Geng Z, Li Z, et al. Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater Sci Eng C. 2016;62:105–112.
  • Wang F, Li C, Zhang S, et al. Role of TiO 2 nanotubes on the surface of implants in osseointegration in animal models: a systematic review and meta-analysis. J Prosthodontics. 2020;29(6):501–510. DOI:10.1111/jopr.13163
  • Sinn Aw M, Kurian M, Losic D. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci. 2014;2(1):10–34.
  • Costa RC, Souza JGS, Cordeiro JM, et al. Synthesis of bioactive glass based coating by plasma electrolytic oxidation: untangling a new deposition pathway toward titanium implant surfaces. J Colloid Interface Sci. 2020;579:680–698.
  • Sikdar S, Menezes PV, Maccione R, et al. Plasma electrolytic oxidation (PEO) process—processing, properties, and applications. Nanomaterials. 2021;11(6):1375. DOI:10.3390/nano11061375
  • da SV MI, da Cruz NC, Landers R, et al. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: the role of electrolyte concentration and treatment duration. Biointerphases. 2015;10(4):041002. DOI:10.1116/1.4932579
  • Yan R, Li J, Wu Q, et al. Trace element-augmented titanium implant with targeted angiogenesis and enhanced osseointegration in osteoporotic Rats. Front Chem. 2022;10:839062.
  • He J, Feng W, Zhao B-H, et al. In vivo effect of titanium implants with porous zinc-containing coatings prepared by plasma electrolytic oxidation method on osseointegration in rabbits. Int J Oral Maxillofac Implants. 2018;33:298–310.
  • Rokosz K, Hryniewicz T, Ł D. Phosphate porous coatings enriched with selected elements via PEO treatment on titanium and its alloys: a review. Materials. 2020;13(11):2468.
  • van Hengel IAJ, Tierolf MWAM, MWAM T, et al. Antibacterial titanium implants biofunctionalized by plasma electrolytic oxidation with silver, zinc, and copper: a systematic review. Int J Mol Sci. 2021;22(7):3800. DOI:10.3390/ijms22073800
  • Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1–61.
  • Boccaccini AR, Keim S, Ma R, et al. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7(suppl_5):S581–613. DOI:10.1098/rsif.2010.0156.focus
  • Kumari S, Tiyyagura HR, Pottathara YB, et al. Surface functionalization of chitosan as a coating material for orthopaedic applications: a comprehensive review. Carbohydr Polym. 2021;255:117487.
  • Stojanovic D, Jokic B, Veljovic D, et al. Bioactive glass–apatite composite coating for titanium implant synthesized by electrophoretic deposition. J Eur Ceram Soc. 2007;27(2–3):1595–1599. DOI:10.1016/j.jeurceramsoc.2006.04.111
  • Zamuner A, Pasquato A, Castagliuolo I, et al. Selective grafting of protease-resistant adhesive peptides on titanium surfaces. Molecules. 2022;27(24):8727. DOI:10.3390/molecules27248727
  • Fang K, Song W, Wang L, et al. Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation. Int J Nanomedicine. 2014;9:4649–4657.
  • Vaz JM, Pezzoli D, Chevallier P, et al. Antibacterial coatings based on chitosan for pharmaceutical and biomedical applications. Curr Pharm Des. 2018;24(8):866–885. DOI:10.2174/1381612824666180219143900
  • Córdoba A, Hierro-Oliva M, Pacha-Olivenza MÁ, et al. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti–O–P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion. ACS Appl Mater Interfaces. 2016;8(18):11326–11335. DOI:10.1021/acsami.6b02533
  • Pavlukhina S, Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev. 2011;63(9):822–836.
  • Volodkin D, Madaboosi N, Blacklock J, et al. Surface-supported multilayers decorated with bio-active material aimed at light-triggered drug delivery. Langmuir. 2009;25:14037–14043.
  • Li QL, Huang N, Chen J, et al. Anticoagulant surface modification of titanium via layer-by-layer assembly of collagen and sulfated chitosan multilayers. J Biomed Mater Res. 2009;89(3):575–584. DOI:10.1002/jbm.a.31999
  • Pham VTH, Truong VK, Orlowska A, et al. “Race for the Surface”: eukaryotic Cells Can Win. ACS Appl Mater Interfaces. 2016;8(34):22025–22031. DOI:10.1021/acsami.6b06415
  • Hao J, Li Y, Li B, et al. Biological and mechanical effects of micronanostructured titanium surface on an osteoblastic cell line in vitro and osteointegration in vivo. Appl Biochem Biotechnol. 2017;183(1):280–292. DOI:10.1007/s12010-017-2444-1
  • Hamlet SM, Lee RSB, Moon HJ, et al. Hydrophilic titanium surface-induced macrophage modulation promotes pro-osteogenic signalling. Clin Oral Implants Res. 2019;30(11):1085–1096. DOI:10.1111/clr.13522

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.