265
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent developments in imaging and surgical vision technologies currently available for improving vitreoretinal surgery: a narrative review

, , &
Pages 651-672 | Received 27 Dec 2022, Accepted 28 Jun 2023, Published online: 06 Jul 2023

References

  • Ehlers JP, Tao YK, Srivastava SK. The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Curr Opin Ophthalmol. 2014;25(3):221–227. doi: 10.1097/ICU.0000000000000044
  • Delyfer MN, Gaucher D, Mohand‐Saïd S, et al. Improved performance and safety from Argus II retinal prosthesis post‐approval study in France. Acta Ophthalmol. 2021;99(7):e1212–e21. doi: 10.1111/aos.14728
  • Mao ZQ, Wu HX, Fan HM, et al. Intraoperative optical coherence tomography in idiopathic macular epiretinal membrane surgery. Int J Gene Med. 2022;15:6499–6505. doi: 10.2147/IJGM.S374630
  • Palácios RM, de Carvalho ACM, Maia M, et al. An experimental and clinical study on the initial experiences of Brazilian vitreoretinal surgeons with heads-up surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257(3):473–483. doi: 10.1007/s00417-019-04246-w
  • Ehlers JP, Goshe J, Dupps WJ, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results. JAMA Ophthalmol. 2015;133(10):1124–1132. doi: 10.1001/jamaophthalmol.2015.2376
  • Li Y, Zheng F, Foo LL, et al. Advances in OCT imaging in myopia and pathologic myopia. Diagnostics. 2022;12(6). doi: 10.3390/diagnostics12061418
  • Ehlers JP, Dupps WJ, Kaiser PK, et al. The prospective intraoperative and Perioperative Ophthalmic ImagiNg with Optical CoherEncE TomogRaphy (PIONEER) Study: 2-year results. Am J Ophthalmol. 2014;158(5):999–1007. doi: 10.1016/j.ajo.2014.07.034
  • Legocki AT, Zepeda EM, Gillette TB, et al. Vitreous findings by handheld spectral-domain oct correlate with retinopathy of prematurity severity. Ophthalmol Retina. 2020;4(10):1008–1015. doi: 10.1016/j.oret.2020.03.027
  • Eguchi H, Hotta F, Kusaka S, et al. Intraoperative optical coherence tomography imaging in corneal surgery: a literature review and proposal of novel applications. J Ophthalmol. 2020;2020:1–10. doi: 10.1155/2020/1497089
  • Joos KM, Shen J-H. Miniature real-time intraoperative forward-imaging optical coherence tomography probe. Biomed Opt Express. 2013;4(8):1342–1350. doi: 10.1364/BOE.4.001342
  • Ashurov A, Chronopoulos A, Heim J, et al. Real-time (iOCT) guided epiretinal membrane surgery using a novel forceps with laser-ablated microstructure tip surface. Clin Pract. 2022;12(5):818–825. doi: 10.3390/clinpract12050086
  • Ehlers JP, Uchida A, Srivastava SK. The integrative surgical theater: combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study. Retina (Philadelphia, Pa). 2018;38(1):S88–S96. doi: 10.1097/IAE.0000000000001999
  • Figueiredo N, Talcott KE, Srivastava SK, et al. Conventional microscope-integrated intraoperative OCT versus digitally enabled intraoperative OCT in vitreoretinal surgery in the DISCOVER study. Ophthalmic Surge Lasers Imaging Retina. 2020;51(4):S37–S43. doi: 10.3928/23258160-20200401-05
  • Cereda MG, Parrulli S, Douven Y, et al. Clinical evaluation of an instrument-integrated OCT-based distance sensor for robotic vitreoretinal surgery. Ophthalmol Sci. 2021;1(4):100085. doi: 10.1016/j.xops.2021.100085
  • Talcott K, Knapp A, Srivastava SK, et al. Three dimensional digitally-enabled intraoperative OCT compared with conventional microscope-integrated intraoperative OCT in vitreoretinal surgery: a post hoc analysis of the DISCOVER study. Invest Ophthalmol Visual Sci. 2022;63(7):35–.
  • Zakir R, Iqbal K, Hassaan Ali M, et al. The outcomes and usefulness of intraoperative Optical Coherence Tomography in vitreoretinal surgery and its impact on surgical decision making. Rom J Ophthalmol. 2022;66(1):55–60.
  • Lorusso M, Micelli Ferrari L, Gisotti EN, et al. Success of iOCT in surgical management of ERM peeling. Eur J Ophthalmol. 2022;32(5):3116–3120. doi: 10.1177/11206721221085383
  • Tuifua TS, Sood AB, Abraham JR, et al. Epiretinal membrane surgery using intraoperative OCT-Guided membrane removal in the DISCOVER study versus conventional membrane removal. Ophthalmol Retina. 2021;5(12):1254–1262. doi: 10.1016/j.oret.2021.02.013
  • Tao J, Chen H, Yu J, et al. Feasibility and utility of intraoperative optical coherence tomography during vitreoretinal surgery: a 4-year report in Chinese population. J Innov Opt Health Sci. 2021;14(1):2140004. doi: 10.1142/S1793545821400046
  • Tan GS, Liu Z, Ilmarinen T, et al. Hints for gentle submacular injection in non-human primates based on intraoperative OCT guidance. Trans Vision Sci Technol. 2021;10(1):10–. doi: 10.1167/tvst.10.1.10
  • Yee P, Sevgi DD, Abraham J, et al. Ioct-assisted macular hole surgery: outcomes and utility from the DISCOVER study. Br J Ophthalmol. 2021;105(3):403–409. doi: 10.1136/bjophthalmol-2020-316045
  • Abraham JR, Srivastava SK, Le TK, et al. Intraoperative OCT-assisted retinal detachment repair in the DISCOVER study: impact and outcomes. Ophthalmol Retina. 2020;4(4):378–383. doi: 10.1016/j.oret.2019.11.002
  • Kashani AH, Uang J, Mert M, et al. Surgical method for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy: experience from a phase 1/2a study. Ophthalmol Retina. 2020;4(3):264–273. doi: 10.1016/j.oret.2019.09.017
  • Vasconcelos HM, Lujan BJ, Pennesi ME, et al. Intraoperative optical coherence tomographic findings in patients undergoing subretinal gene therapy surgery. Int J Retina Vitreous. 2020;6(1):1–10. doi: 10.1186/s40942-020-00216-1
  • Lorusso M, Ferrari LM, Cicinelli MV, et al. Feasibility and safety of intraoperative optical coherence tomography-guided short-term posturing prescription after macular hole surgery. Ophthalmic Res. 2020;63(1):18–24. doi: 10.1159/000501561
  • Плахотний М, Терещенко А, Трифаненкова И, et al. Наш опыт проведения витреоретинальных вмешательств с использованием интраоперационной оптической когерентной томографии. Modern Technol Ophtalmol. 2020;2020(2):227–230. doi: 10.25276/2312-4911-2020-2-227-230
  • Sastry A, Li JD, Raynor W, et al. Microscope-integrated OCT-Guided volumetric measurements of subretinal blebs created by a suprachoroidal approach. Trans Vision Sci Technol. 2021;10(7):24–. doi: 10.1167/tvst.10.7.24
  • Tao J, Wu H, Chen Y, et al. Use of iOCT in vitreoretinal surgery for dense vitreous hemorrhage in a Chinese population. Curr Eye Res. 2019;44(2):219–224. doi: 10.1080/02713683.2018.1533982
  • SINGH SR, Dogra M, Dogra MR, et al. Efficacy of intraoperative OCT in various vitreoretinal indications. Invest Ophthalmol Visual Sci. 2019;60(9):1876–.
  • Leisser C, Hirnschall N, Palkovits S, et al. Intraoperative optical coherence tomography-guided membrane peeling for surgery of macular pucker: advantages and limitations. Ophthalmologica. 2019;241(4):234–240. doi: 10.1159/000493279
  • Junior HV, Yang P, Pennesi ME, et al. An analysis of intraoperative optical coherence tomography findings in subretinal gene therapy surgery. Invest Ophthalmol Visual Sci. 2019;60(9):6399–.
  • Lytvynchuk LM, Falkner-Radler CI, Krepler K, et al. Dynamic intraoperative optical coherence tomography for inverted internal limiting membrane flap technique in large macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257(8):1649–1659. doi: 10.1007/s00417-019-04364-5
  • Itoh Y, Inoue M, Kato Y, et al. Alterations of foveal architecture during vitrectomy for myopic retinoschisis identified by intraoperative optical coherence tomography. Ophthalmologica. 2019;242(2):87–97. doi: 10.1159/000500362
  • Kumar JB, Ehlers JP, Sharma S, et al. Intraoperative OCT for uveitis-related vitreoretinal surgery in the DISCOVER study. Ophthalmol Retina. 2018;2(10):1041–1049. doi: 10.1016/j.oret.2018.02.013
  • Khan M, Srivastava SK, Reese JL, et al. Intraoperative OCT-assisted surgery for proliferative diabetic retinopathy in the DISCOVER study. Ophthalmol Retina. 2018;2(5):411–417. doi: 10.1016/j.oret.2017.08.020
  • Ehlers JP, Khan M, Petkovsek D, et al. Outcomes of intraoperative OCT–assisted epiretinal membrane surgery from the pioneer study. Ophthalmol Retina. 2018;2(4):263–267. doi: 10.1016/j.oret.2017.05.006
  • Ehlers JP, Modi YS, Pecen PE, et al. The DISCOVER study 3-year results: feasibility and usefulness of microscope-integrated intraoperative OCT during ophthalmic surgery. Ophthalmol. 2018;125(7):1014–1027. doi: 10.1016/j.ophtha.2017.12.037
  • Bruyère E, Philippakis E, Dupas B, et al. Benefit of intraoperative optical coherence tomography for vitreomacular surgery in highly myopic eyes. Retina. 2018;38(10):2035–2044. doi: 10.1097/IAE.0000000000001827
  • Browne AW, Ehlers JP, Sharma S, et al. Intraoperative optical coherence tomography-assisted chorioretinal biopsy in the DISCOVER study. Retina (Philadelphia, Pa). 2017;37(11):2183–2187. doi: 10.1097/IAE.0000000000001522
  • Stanzel BV, Amaral J, Maminishkis A, et al. Optical coherence tomographic imaging of posterior episclera and Tenon’s Capsule. Invest Ophthalmol Visual Sci. 2017;58(8):3389–. doi: 10.1167/iovs.16-21394
  • Yang YS, Sohn J, Park JI, et al. Utility of the intraoperative optical coherence tomography for dense vitreous hemorrhage. J Retina. 2017;2(2):91–96. doi: 10.21561/jor.2017.2.2.91
  • Branchini LA, Gurley K, Duker JS, et al. Use of handheld intraoperative spectral-domain optical coherence tomography in a variety of vitreoretinal diseases. Ophthalmic Surge Lasers Imaging Retina. 2016;47(1):49–54. doi: 10.3928/23258160-20151214-07
  • Ehlers JP, Griffith JF, SKJR S. Intraoperative OCT during vitreoretinal surgery for dense vitreous hemorrhage in the PIONEER study. Retina. 2015;35(12):2537. doi: 10.1097/IAE.0000000000000660
  • Smith AG, Cost BM, JPJ E. Intraoperative OCT-assisted subretinal perfluorocarbon liquid removal in the DISCOVER study. Ophthalmic Surge Lasers Imaging Retina. 2015;46(9):964–966. doi: 10.3928/23258160-20151008-10
  • Ehlers JP, Petkovsek DS, Yuan A, et al. Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surge Lasers Imaging Retina. 2015;46(3):327–332. doi: 10.3928/23258160-20150323-05
  • Ehlers JP, Han J, Petkovsek D, et al. Membrane peeling-induced retinal alterations on intraoperative OCT in vitreomacular interface disorders from the PIONEER study. Investig Ophthalmol Vis Sci. 2015;56(12):7324–7330. doi: 10.1167/iovs.15-17526
  • Pfau M, Michels S, Binder S, et al. Clinical experience with the first commercially available intraoperative optical coherence tomography system. Ophthalmic Surge Lasers Imaging Retina. 2015;46(10):1001–1008. doi: 10.3928/23258160-20151027-03
  • Ehlers JP, Tam T, Kaiser PK, et al. Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina (Philadelphia, Pa). 2014;34(7):1341–1346. doi: 10.1097/IAE.0000000000000123
  • Ehlers JP, Dupps WJ, Kaiser PK, et al. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am J Ophthalmol. 2014;158(5):999–1007. e1. doi: 10.1016/j.ajo.2014.07.034
  • Ehlers JP, Kaiser PK, Srivastava SK. Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study. Br J Ophthalmol. 2014;98(10):1329–1332. doi: 10.1136/bjophthalmol-2014-305294
  • Petkovsek D, Srivastava SK, Yuan A, et al. Feasibility of intrasurgical assessment of submacular tPA injection for submacular hemorrhage utilizing intraoperative OCT. Investig Ophthalmol Vis Sci. 2014;55(13):3357–.
  • Tam T, Srivastava S, Kaiser P, et al. Preclinical SPECT/CT imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J Nucl Med. 2013;54(15):2146–. doi: 10.2967/jnumed.113.120592
  • Ehlers J, Roth B, Kaiser P, et al. Impact of surgical peeling on retinal microarchitecture in epiretinal membrane surgery visualized with intraoperative optical coherence tomography. Investig Ophthalmol Vis Sci. 2013;54(15):3308–.
  • Kantor P, Matonti F, Varenne F, et al. Use of the heads-up NGENUITY 3D visualization system for vitreoretinal surgery: a retrospective evaluation of outcomes in a French tertiary center. Sci Rep. 2021;11(1):10031. doi: 10.1038/s41598-021-88993-z
  • Liu J, Wu D, Ren X, et al. Clinical experience of using the NGENUITY three‐dimensional surgery system in ophthalmic surgical procedures. Acta Ophthalmol. 2021;99(1):e101–e8. doi: 10.1111/aos.14518
  • Freeman WR, Chen KC, Ho J, et al. Resolution, depth of field, and physician satisfaction during digitally assisted vitreoretinal surgery. Retina (Philadelphia, Pa). 2019;39(9):1768–1771. doi: 10.1097/IAE.0000000000002236
  • Liu J, Wu D, Ren X, et al. Clinical experience of using the NGENUITY three‐dimensional surgery system in ophthalmic surgical procedures. Acta Ophthalmol. 2021;99(1):e101–e8. doi: 10.1111/aos.14518
  • Agranat JS, Miller JB, Douglas VP, et al. The scope of three-dimensional digital visualization systems in vitreoretinal surgery. Clin Ophthalmol. 2019;13:2093. 10.2147/OPTH.S213834.
  • Freeman WR, Chen KC, Ho J, et al. Resolution, depth of field, and physician satisfaction during digitally assisted vitreoretinal surgery. Retina (Philadelphia, Pa). 2019;39(9):1768. doi: 10.1097/IAE.0000000000002236
  • Kumar A, Hasan N, Kakkar P, et al. Comparison of clinical outcomes between “heads-up” 3D viewing system and conventional microscope in macular hole surgeries: a pilot study. Indian J Ophthalmol. 2018;66(12):1816. doi: 10.4103/ijo.IJO_59_18
  • Gupta Y, Tandon R. Optimization of surgeon ergonomics with three-dimensional heads-up display for ophthalmic surgeries. Indian J Ophthalmol. 2022;70(3):847–850. doi: 10.4103/ijo.IJO_1548_21
  • Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina (Philadelphia, Pa). 2016;36(1):137–147. doi: 10.1097/IAE.0000000000000689
  • Dutra-Medeiros M, Nascimento J, Henriques J, et al. Three-dimensional head-mounted display system for ophthalmic surgical procedures. Retina (Philadelphia, Pa). 2017;37(7):1411–1414. doi: 10.1097/IAE.0000000000001514
  • Martínez-Toldos JJ, Fernández-Martínez C, Navarro-Navarro A. Experience using a 3D head-mounted display system in ophthalmic surgery. Retina (Philadelphia, Pa). 2017;37(7):1419–1421. doi: 10.1097/IAE.0000000000001664
  • Moura-Coelho N, Henriques J, Nascimento J, et al. Three-dimensional display systems in ophthalmic surgery–A review. Eur Ophthalmic Rev. 2019;13(1):31–36. doi: 10.17925/EOR.2019.13.1.31
  • Zhao XY, Zhao Q, N-N L, et al. Surgery-related characteristics, efficacy, safety and surgical team satisfaction of three-dimensional heads-up system versus traditional microscopic equipment for various vitreoretinal diseases. Graefes Arch Clin Exp Ophthalmol. 2022;261(3):1–11. doi: 10.1007/s00417-022-05850-z
  • Nowomiejska K, Toro MD, Bonfiglio V, et al. Vitrectomy combined with cataract surgery for retinal detachment using a three-dimensional viewing system. J Clin Med. 2022;11(7):1788. doi: 10.3390/jcm11071788
  • Ta Kim D, Chow D. The effect of latency on surgical performance and usability in a three-dimensional heads-up display visualization system for vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol. 2022;260(2):471–476. doi: 10.1007/s00417-021-05388-6
  • Miller J, Sokol J, Ludwig CA, et al. Surgical outcomes of scleral buckling for rhegmatogenous retinal detachment using the NGENUITY three-dimensional visualization system with a guarded light pipe. Investig Ophthalmol Vis Sci. 2022;63(7):34–.
  • Bin Helayel H, Al-Mazidi S, AlAkeely A. Can the three-dimensional heads-up display improve ergonomics, surgical performance, and ophthalmology training compared to conventional microscopy? Clin Ophthalmol. 2021;15:679–686. doi: 10.2147/OPTH.S290396
  • Kantor P, Matonti F, Varenne F, et al. Use of the heads-up NGENUITY 3D visualization system for vitreoretinal surgery: a retrospective evaluation of outcomes in a French tertiary center. Sci Rep. 2021;11(1):1–11. doi: 10.1038/s41598-021-88993-z
  • Velasque L, Arbousoff N, Rigaudier F, et al. Lux study: contribution of a three-dimensional, high dynamic range, ultra-high-definition heads-up visualization system to a significant delivered light intensity decrease during different types of ocular surgeries. J Fr d’Ophtalmol. 2021;44(8):1129–1141. doi: 10.1016/j.jfo.2021.01.006
  • AlZaid A, Alsakran WA, Alsulaiman SM, et al. Comparison of heads up three dimensional visualization system to conventional microscope in retinopathy of prematurity related tractional retinal detachment. Sci Rep. 2021;11(1):1–5. doi: 10.1038/s41598-021-01806-1
  • Cheng TC, Yahya MFN, Mohd Naffi AA, et al. Evaluation of three-dimensional heads up ophthalmic surgery demonstration from the perspective of surgeons and postgraduate trainees. J Craniofac Surg. 2021;32(7):2285–2291. doi: 10.1097/SCS.0000000000007645
  • Reddy S, Mallikarjun K, Mohamed A, et al. Comparing clinical outcomes of macular hole surgeries performed by trainee surgeons using a 3D heads-up display viewing system versus a standard operating microscope. Int Ophthalmol. 2021;41(8):2649–2655. doi: 10.1007/s10792-021-01792-3
  • Rani D, Kumar A, Chandra P, et al. Heads-up 3D viewing system in rhegmatogenous retinal detachment with proliferative vitreoretinopathy-A prospective randomized trial. Indian J Ophthalmol. 2021;69(2):320. doi: 10.4103/ijo.IJO_1720_20
  • Kannan NB, Jena S, Sen S, et al. A comparison of using digitally assisted vitreoretinal surgery during repair of rhegmatogenous retinal detachments to the conventional analog microscope: a prospective interventional study. Int Ophthalmol. 2021;41(5):1689–1695. doi: 10.1007/s10792-021-01725-0
  • Narde HK, Puri P, Shaikh NF, et al. Vitrectomy without encircling band for rhegmatogenous retinal detachment with inferior break utilizing 3D heads up viewing system. Indian J Ophthalmol. 2021;69(5):1208–1212. doi: 10.4103/ijo.IJO_2028_20
  • Bawankule PK, Narnaware SH, Chakraborty M, et al. Digitally assisted three-dimensional surgery - beyond vitreous. Indian J Ophthalmol. 2021;69(7):1793–1800. doi: 10.4103/ijo.IJO_3111_20
  • Mura M, Martin W, Williams KK, et al. Comparison of 3D digitally assisted visualization system with current standard visualization for the removal of vitreous in a preclinical model. Clin Ophthalmol. 2021;15:4499–4505. doi: 10.2147/OPTH.S327570
  • Saito Y, Horiguchi H, Mizobuchi K, et al. Effectiveness of the heads-up surgery system for retinal surgery in a patient with severe photophobia. Int Med Case Rep J. 2021;14:583–589. doi: 10.2147/IMCRJ.S326803
  • Singh N, Priya S, Shah H, et al. Comparison of ngenuity and traditional microscope in vitreoretinal surgeries from surgeon’s perspective. 2021.
  • Weinstock RJ, Ainslie-Garcia MH, Ferko NC, et al. Comparative assessment of ergonomic experience with heads-up display and conventional surgical microscope in the operating room. Clin Ophthalmol. 2021;15:347–356. doi: 10.2147/OPTH.S292152
  • Asani B, Siedlecki J, Schworm B, et al. 3D heads-up display vs. standard operating microscope vitrectomy for rhegmatogenous retinal detachment. Front Med. 2020;7:615515. doi: 10.3389/fmed.2020.615515
  • Berquet F, Henry A, Barbe C, et al. Comparing heads-up versus binocular microscope visualization systems in anterior and posterior segment surgeries: a retrospective study. Ophthalmologica. 2020;243(5):347–354. doi: 10.1159/000507088
  • Palácios RM, Kayat KV, Morel C, et al. Clinical study on the initial experiences of French vitreoretinal surgeons with heads-up surgery. Curr Eye Res. 2020;45(10):1265–1272. doi: 10.1080/02713683.2020.1737136
  • Shoshany TN, Agranat JS, Armstrong G, et al. The user experience on a 3-dimensional heads-up display for vitreoretinal surgery across all members of the health care team: a survey of medical students, residents, fellows, attending surgeons, nurses, and anesthesiologists. J Vitreoretin Dis. 2020;4(6):459–466. doi: 10.1177/2474126420929614
  • Babu N, Kohli P, Jena S, et al. Utility of digitally assisted vitreoretinal surgery systems (DAVS) for high-volume vitreoretinal surgery centre: a pilot study. Br J Ophthalmol. 2020;104(3):432–436. doi: 10.1136/bjophthalmol-2019-314123
  • Cheng TC, Yahya MFN, Naffi AAM, et al. Evaluation of 3D heads up ophthalmic surgery from the perspective of surgeons and postgraduate trainees. J Craniofacial Surg. 2020;32:e262–e265.
  • Zhang Z, Wang L, Wei Y, et al. The preliminary experiences with three-dimensional heads-up display viewing system for vitreoretinal surgery under various status. Curr Eye Res. 2019;44(1):102–109. doi: 10.1080/02713683.2018.1526305
  • Zhang T, Tang W, GJCER X. Comparative analysis of three-dimensional heads-up vitrectomy and traditional microscopic vitrectomy for vitreoretinal diseases. Curr Eye Res. 2019;44(10):1080–1086. doi: 10.1080/02713683.2019.1612443
  • Talcott KE, Adam MK, Sioufi K, et al. Comparison of a three-dimensional heads-up display surgical platform with a standard operating microscope for macular surgery. Ophthalmol Retina. 2019;3(3):244–251. doi: 10.1016/j.oret.2018.10.016
  • Matsumoto CS, Shibuya M, Makita J, et al. Heads-up 3D surgery under low light intensity conditions: new high-sensitivity HD camera for ophthalmological microscopes. J Ophthalmol. 2019;2019:5013463. doi: 10.1155/2019/5013463
  • Agranat JS, Miller JB, Douglas VP, et al. The scope of three-dimensional digital visualization systems in vitreoretinal surgery. Clin Ophthalmol. 2019;13:2093–2096. doi: 10.2147/OPTH.S213834
  • Palácios RM, Maia A, Farah ME, et al. Learning curve of three-dimensional heads-up vitreoretinal surgery for treating macular holes: a prospective study. Int Ophthalmol. 2019;39(10):2353–2359. doi: 10.1007/s10792-019-01075-y
  • Palácios RM, de Carvalho ACM, Maia M, et al. An experimental and clinical study on the initial experiences of Brazilian vitreoretinal surgeons with heads-up surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257(3):473–483. doi: 10.1007/s00417-019-04246-w
  • González-Saldivar G, Chow DRJJo VD. Comparison of simulated surgical skills using different camera aperture settings for digitally assisted vitreoretinal surgery. J Vitreoretin Dis. 2019;3(5):328–331. doi: 10.1177/2474126419869735
  • Rizzo S, Abbruzzese G, Savastano A, et al. 3D surgical viewing system in ophthalmology: perceptions of the surgical team. Retina. 2018;38(4):857–861. doi: 10.1097/IAE.0000000000002018
  • Romano MR, Cennamo G, Comune C, et al. Evaluation of 3D heads-up vitrectomy: outcomes of psychometric skills testing and surgeon satisfaction. Eye. 2018;32(6):1093–1098. doi: 10.1038/s41433-018-0027-1
  • Chhaya N, Helmy O, Piri N, et al. Comparison of 2d and 3d video displays for teaching vitreoretinal surgery. Retina (Philadelphia, Pa). 2018;38(8). doi: 10.1097/IAE.0000000000001743
  • Skinner CC, Riemann CD. “Heads up” digitally assisted surgical viewing for retinal detachment repair in a patient with severe kyphosis. Retin Cases Brief Rep. 2018;12(3):257–259. doi: 10.1097/ICB.0000000000000486
  • Kita M, Mori Y, Hama S. Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system. Clin Ophthalmol. 2018;12:313–317. doi: 10.2147/OPTH.S156497
  • Babu N, Kohli P, Ramachandran NO, et al. Comparison of surgical performance of internal limiting membrane peeling using a 3-D visualization system with conventional microscope. Ophthalmic Surge Lasers Imaging Retina. 2018;49(12):941–945. doi: 10.3928/23258160-20181203-06
  • Korot E, Thanos A, Todorich B, et al. Use of the avegant glyph head-mounted virtual retinal projection display to perform vitreoretinal surgery. J Vitreoretin Dis. 2018;2(1):22–25. doi: 10.1177/2474126417738613
  • Coppola M, La Spina C, Rabiolo A, et al. Heads-up 3D vision system for retinal detachment surgery. Int J Retina Vitreous. 2017;3(1):1–3. doi: 10.1186/s40942-017-0099-2
  • Adam MK, Thornton S, Regillo CD, et al. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2017;37(9):1746–1749. doi: 10.1097/IAE.0000000000001420
  • Dutra-Medeiros M, Nascimento J, Henriques J, et al. Three-dimensional head-mounted display system for ophthalmic surgical procedures. Retina. 2017;37(7):1411–1414. doi: 10.1097/IAE.0000000000001514
  • Thornton S, Adam MK, Ho AC, et al. Endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Investig Ophthalmol Vis Sci. 2016;57(12):4467–.
  • Kunikata H, Abe T, TJCrio N. Heads-up macular surgery with a 27-gauge microincision vitrectomy system and minimal illumination. Case Rep Ophthalmol. 2016;7(3):543–547. doi: 10.1159/000452993
  • Eckardt C, EBJR P. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina. 2016;36(1):137–147. doi: 10.1097/IAE.0000000000000689
  • Riemann C Machine vision and vitrectomy: three-dimensional high definition (3DHD) video for surgical visualization in vitreoretinal surgery. Proceedings of SPIE - The International Society for Optical Engineering, IS&T/SPIE Electronic Imaging, San Francisco Airport, California, United States. 2011; p. 7863.
  • Rizzo S, Abbruzzese G, Savastano A, et al. 3D surgical viewing system in ophthalmology: perceptions of the surgical team. retina (Philadelphia, pa). Retina. 2018;38(4):857–861. doi: 10.1097/IAE.0000000000002018
  • Li J-P, Liu H, Ting DS, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. Prog Retin Eye Res. 2021;82:100900. doi: 10.1016/j.preteyeres.2020.100900
  • Yeo DC, Nagiel A, Yang U, et al. Endoscopy for pediatric retinal disease. Asia-Pac j Ophthalmol. 2018;7(3):200–207. doi: 10.22608/APO.2018154
  • Wong SC, Lee TC, Heier JS, et al. Endoscopic vitrectomy. Curr Opin Ophthalmol. 2014;25(3):195–206. doi: 10.1097/ICU.0000000000000052
  • Lai FHP, Wong EWN, Lam WC, et al. Endoscopic vitreoretinal surgery: review of current applications and future trends. Surv Ophthalmol. 2021;66(2):198–212. doi: 10.1016/j.survophthal.2020.11.004
  • Ajlan RS, Desai AA, Mainster MA. Endoscopic vitreoretinal surgery: principles, applications and new directions. Int J Retina Vitreous. 2019;5(1):1–11. doi: 10.1186/s40942-019-0165-z
  • Yeo DC, Nagiel A, Yang U, et al. Endoscopy for pediatric retinal disease. Asia-Pac J Ophthalmol. 2018;7(3):200–207. doi: 10.22608/APO.2018154
  • Marra KV, Yonekawa Y, Papakostas TD, et al. Indications and techniques of endoscope assisted vitrectomy. J Ophthalmic Vis Res. 2013;8(3):282.
  • Mori T, Kaga T, Yoshida N, et al. Usefulness of the proximity endoscope in vitrectomy for proliferative diabetic retinopathy. Retina (Philadelphia, Pa). 2020;40(12):2424–2426. doi: 10.1097/IAE.0000000000002937
  • Sturzeneker G, Pereira RR, Nakaghi RO, et al. MODIFIED PORTABLE CAMERA ENDOSCOPE for POSTERIOR SEGMENT SURGERY. Retina. 2021;41(1):228–229. doi: 10.1097/IAE.0000000000002973
  • Ge Y, Jin K, Wang Y, et al. High-resolution ex-vivo imaging of retina with a laptop-based portable endoscope. J Ophthalmol. 2022;2022:1903516. doi: 10.1155/2022/1903516
  • Choudhry N, Duker JS, Freund KB, et al. Classification and guidelines for widefield imaging: recommendations from the International Widefield Imaging Study Group. Ophthalmol Retina. 2019;3(10):843–849. doi: 10.1016/j.oret.2019.05.007
  • Pan Q, Gao Z, Chen X, et al. Outcomes of a novel bubble ultra‐wide field viewing system for vitreoretinal surgery. Acta Ophthalmol. 2022;100(4):e1024–e30. doi: 10.1111/aos.15006
  • Leiderman YI. An optimized technique for peripheral vitreoretinal surgery with chandelier endoillumination. Retina. 2022;42(7):1403–1405. doi: 10.1097/IAE.0000000000002474
  • Tieger MG, Rodriguez M, Wang JC, et al. Impact of contact versus non-contact wide-angle viewing systems on outcomes of primary retinal detachment repair (PRO study report number 5). Br J Ophthalmol. 2021;105(3):410–413. doi: 10.1136/bjophthalmol-2020-315948
  • Hadi TM, Knight DK, Aggarwal S, et al. Improving the view in vitreoretinal surgery. Int Ophthalmol Clin. 2020;60(3):91–101. doi: 10.1097/IIO.0000000000000312
  • Lai C-T, Kung W-H, Lin C-J, et al. Outcome of primary rhegmatogenous retinal detachment using microincision vitrectomy and sutureless wide-angle viewing systems. BMC Ophthalmol. 2019;19(1):230. doi: 10.1186/s12886-019-1238-3
  • Chow DR. The evolution of endoillumination. Microin Vitrect Sur. 2014;54:77–86.
  • Coulon SJ, Essilfie J, Dedania VS. Vitrectomy visualization systems and techniques. Oper Tech Vitreoretinal Surg E-Book. 2022;285.
  • Oshima YJRT. Chandelier endoillumination in vitreoretinal surgery. Retina Today. 2013;8:68–72.
  • Koelbl PS, Lingenfelder C, Spraul CW, et al. An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy. Eur J Ophthalmol. 2019;29(1):75–81. doi: 10.1177/1120672118757618
  • Kita M, Kusaka M, Yamada H, et al. Updated chandelier illumination-assisted scleral buckling using 3D visualization system. Clin Ophthalmol. 2019;13:1743–1748. doi: 10.2147/OPTH.S218975
  • Aykut V, Esen F, HJNCoİ O. A novel, low-cost and practical illumination approach for bimanual vitrectomy. North Clin Istanb. 2020;7(3):275–279. doi: 10.14744/nci.2020.21704
  • Agranat JS, Douglas VP, Douglas KA, et al. A guarded light pipe for direct visualization during primary scleral buckling on the Ngenuity platform. Int J Retin Vitr. 2020;6(1):1–4. doi: 10.1186/s40942-020-00246-9
  • Baldwin G, Sokol JT, Ludwig CA, et al. A comparative study of traditional scleral buckling to a new technique: guarded light pipe with heads-up three-dimensional visualization. Clin Ophthalmol. 2022;16:3079–3088. doi: 10.2147/OPTH.S378179
  • Yannuzzi NA, Patel NA, Berrocal AM, et al. Encircling scleral buckle with chandelier endoillumination and endolaser for repair of rhegmatogenous retinal detachment. Clin Ophthalmol. 2020;14:609. doi: 10.2147/OPTH.S238241
  • Seider MI, Nomides RE, Hahn P, et al. Scleral buckling with chandelier illumination. J Ophthalmic Vis Res. 2016;11(3):304–309. doi: 10.4103/2008-322X.188402
  • González-Saldivar G, Chow DR. Update in vitreoretinal instrumentation. Vitreoretinal Instrument. 2018;11(2):98. doi: 10.17925/USOR.2018.11.2.98
  • Charles S. Illumination and phototoxicity issues in vitreoretinal surgery. Retina (Philadelphia, Pa). 2008;28(1):1–4. doi: 10.1097/IAE.0b013e318156e015
  • Sezer T, Altinisik M, Guler EM, et al. Evaluation of xenon, light-emitting diode (LED) and halogen light toxicity on cultured retinal pigment epithelial cells. Cutan Ocul Toxicol. 2019;38(2):125–130. doi: 10.1080/15569527.2018.1539008
  • Henrich PB, Valmaggia C, Lang C, et al. The price for reduced light toxicity: do endoilluminator spectral filters decrease color contrast during Brilliant Blue G–assisted chromovitrectomy? Graefe’s Arch Clin Exp Ophthalmol. 2014;252(3):367–374. doi: 10.1007/s00417-013-2461-x
  • Coppola M, Cicinelli MV, Rabiolo A, et al. Importance of light filters in modern vitreoretinal surgery: an update of the literature. Ophthalmic Res. 2017;58(4):189–193. doi: 10.1159/000475760
  • Henrich PB, Valmaggia C, Lang C, et al. The price for reduced light toxicity: do endoilluminator spectral filters decrease color contrast during Brilliant Blue G–assisted chromovitrectomy? Graefes Arch Clin Exp Ophthalmol. 2014;252(3):367–374. doi: 10.1007/s00417-013-2461-x
  • de Oliveira PRC, Berger AR, Chow DR. Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems. Int J Retina Vitreous. 2016;2(1):28. doi: 10.1186/s40942-016-0052-9
  • Bergamo VC, Caiado RR, Maia A, et al. Role of vital dyes in chromovitrectomy. Asia-Pac J Ophthalmol. 2021;10(1):26–38. doi: 10.1097/APO.0000000000000344
  • Rodrigues EB, Meyer CH, Farah ME, et al. Intravitreal staining of the internal limiting membrane using indocyanine green in the treatment of macular holes. Ophthalmologica. 2005;219(5):251–262. doi: 10.1159/000086107
  • Pradhan D, Agarwal L, Joshi I, et al. Internal limiting membrane peeling in macular hole surgery. Ger Med Sci. 2022;20:20. doi: 10.3205/000309
  • Caporossi T, Finocchio L, Tartaro R, et al. New vital dye injection technique with vitrectomy probe. Ophthalmic Surge Lasers Imaging Retina. 2018;49(7):528–533. doi: 10.3928/23258160-20180628-10
  • Rodrigues EB, Maia M, Meyer CH, et al. Vital dyes for chromovitrectomy. Curr Opin Ophthalmol. 2007;18(3):179–187. doi: 10.1097/ICU.0b013e32811080b5
  • Caiado RR, MNd M-F, Maia A, et al. State of the art in chromovitrectomy. Revista Brasileira de Oftalmologia. 2014;73:363–376. doi: 10.5935/0034-7280.20140076
  • Imai H, Tetsumoto A, Inoue S, et al. Intraoperative three-dimensional fluorescein angiography-guided pars plana vitrectomy for the treatment of proliferative diabetic retinopathy: the maximized utility of the digital assisted vitrectomy. Retina (Philadelphia, Pa). 2020;43(2):359–362. doi: 10.1097/IAE.0000000000002805
  • Gerding H. A short review on the safety of bromphenol blue for dye-assisted vitreoretinal interventions. Klin Monbl Augenheilkd. 2020;237(4):441–445. doi: 10.1055/a-1067-4678
  • Caiado RR, Peris C, Rodrigues EB, et al. A new dye based on anthocyanins from the acai fruit (Euterpe oleracea) for chromovitrectomy in humans: clinical trial results. Graefes Arch Clin Exp Ophthalmol. 2019;257(3):517–528. doi: 10.1007/s00417-018-04204-y
  • Badaro E, Souza-Lima RA, Novais EA, et al. Investigation of new dyes for chromovitrectomy: preclinical biocompatibility of trisodium, orangell and methyl violet. Int J Retina Vitreous. 2015;1(1):1. doi: 10.1186/s40942-015-0003-x
  • Tognetto D, De Giacinto C, D’Aloisio R, et al. The combination of trypan blue and brilliant blue G-assisted vitrectomy for macular pucker: histopathological findings. Ophthalmol J int d’ophtalmologie Int j ophthalmol Zeitschrift fur Augenheilkunde. 2018;239(2–3):167–175. doi: 10.1159/000485986
  • Torres-Villaros H, Louis-Philippe S, Amari F, et al. Macular toxicity of vital dye after pars plana vitrectomy for idiopathic epiretinal membrane: a case report. Am J Ophthalmol Case Rep. 2022;27:101588. doi: 10.1016/j.ajoc.2022.101588
  • Muacevic A, Adler J, Rickmann A, et al. Assessment of macular function following internal limiting membrane peeling with ILM Blue®. Cureus. 2021;12(12):689–694.
  • Bracha P, Ciulla TA, CR B. Vital dyes in vitreomacular surgery. Ophthalmic Surg Lasers Imaging Retina. 2018;49(10):788–798. doi: 10.3928/23258160-20181002-07
  • Piccirillo V, Sbordone S, Sorgente F, et al. Evaluation of efficacy and safety of new high-density dyes for chromovitrectomy. Sci Rep. 2021;11(1):15171. doi: 10.1038/s41598-021-94770-9
  • Oravecz R, Uthoff D, Schrage N, et al. Comparison of modern high-speed vitrectomy systems and the advantages of using dual-bladed probes. Int J Retina Vitreous. 2021;7(1):8. doi: 10.1186/s40942-020-00277-2
  • Casas DR. Vitreoretinal surgery instruments. Springer Singapore: Cutting-edge Vitreoretinal Surgery; 2021. p. 41–46. doi: 10.1007/978-981-33-4168-5_5.
  • Markan A, Kumar A, Vira J, et al. Advances in the tools and techniques of vitreoretinal surgery. Expert Rev Ophthalmol. 2020;15(6):331–345. doi: 10.1080/17469899.2020.1810018
  • Sassine AG, Cakir Y, Talcott KE, et al. Analysis of architectural retinal changes utilizing intraoperative OCT following surgical intervention with the sharkskin forceps. Invest Ophthalmol Visual Sci. 2022;63(7):3328–F0137-3328–F0137.
  • Dhami A, Sharma P, Dhami NB, et al. To evaluate the functional and anatomical outcomes for autologous retinal autograft with Finesse™ Flex Loop for failed macular holes. Indian J Ophthalmol. 2022;70(8):3033–3037. doi: 10.4103/ijo.IJO_3215_21
  • Stalmans P, Vander Mijnsbrugge J, D’Hollander F, et al. Investigation of the effectiveness of a new portable ‘cryopen’ probe for cryotherapy (CryoTreq®). Int J Retina Vitreous. 2021;7(1):28. doi: 10.1186/s40942-021-00302-y
  • Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol. 2019;11:2515841418817501. doi: 10.1177/2515841418817501
  • Ayton LN, Barnes N, Dagnelie G, et al. An update on retinal prostheses. Clin Neurophysiol. 2020;131(6):1383–1398. doi: 10.1016/j.clinph.2019.11.029
  • RIZZO S, BARALE P-O, AYELLO-SCHEER S, et al. Adverse events of the argus ii retinal prosthesis. Retina (Philadelphia, Pa). 2020;40(2):303–311.
  • Edwards TL, Cottriall CL, Xue K, et al. Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa. Ophthalmol. 2018;125(3):432–443. doi: 10.1016/j.ophtha.2017.09.019
  • Palanker D, Le Mer Y, Mohand-Said S, et al. Simultaneous perception of prosthetic and natural vision in AMD patients. Nat Commun. 2022;13(1):1–6. doi: 10.1038/s41467-022-28125-x
  • Ayton LN, Barnes N, Dagnelie G, et al. An update on retinal prostheses. Clin Neurophysiol. 2020;131(6):1383–1398. doi: 10.1016/j.clinph.2019.11.029
  • Titchener SA, Nayagam DA, Kvansakul J, et al. A second-generation (44-channel) suprachoroidal retinal prosthesis: long-term observation of the electrode–tissue interface. Trans Vis Sci Tech. 2022;11(6):12–. doi: 10.1167/tvst.11.6.12
  • Petoe MA, Titchener SA, Kolic M, et al. A second-generation (44-channel) suprachoroidal retinal prosthesis: interim clinical trial results. Trans Vis Sci Tech. 2021;10(10):12–. doi: 10.1167/tvst.10.10.12
  • Chen YQ, Cheng D, Zhu L, et al. Combining robot-assisted surgical system and 3D visualization system for teaching minimally invasive vitreoretinal surgery. Int J Ophthalmol. 2022;15(2):255–260. doi: 10.18240/ijo.2022.02.10
  • Roizenblatt M, Edwards TL, Gehlbach PL. Robot-assisted vitreoretinal surgery: current perspectives. Robotic Surg. 2018;5:1–11. doi: 10.2147/RSRR.S122301
  • Ramamurthy SR, Dave VP, editors. Robotics in vitreo-retinal surgery. seminars in ophthalmology. London, UK: Taylor & Francis; 2022.
  • Faridpooya K, van Romunde SH, Manning SS, et al. Randomized controlled trial on robot‐assisted vs manual surgery for pucker peeling. Clinical Exper Ophthalmol. 2022;50(9):1057–1064. doi: 10.1111/ceo.14174
  • MacLachlan RA, Becker BC, Tabarés JC, et al. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans Rob. 2011;28(1):195–212. doi: 10.1109/TRO.2011.2169634
  • Cutler N, Balicki M, Finkelstein M, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery. Investig Ophthalmol Vis Sci. 2013;54(2):1316–1324. doi: 10.1167/iovs.12-11136
  • Wu J, Li G, Urias M, editors An optimized tilt mechanism for a new steady-hand eye robot. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020: Las Vegas, Nevada, USA: IEEE.
  • Forslund Jacobsen M, Konge L, Alberti M, et al. Robot-assisted vitreoretinal surgery improves surgical accuracy compared with manual surgery: a randomized trial in a simulated setting. Retina (Philadelphia, Pa). 2020;40(11):2091–2098. doi: 10.1097/IAE.0000000000002720
  • Maberley DA, Beelen M, Smit J, et al. A comparison of robotic and manual surgery for internal limiting membrane peeling. Graefes Arch Clin Exp Ophthalmol. 2020;258(4):773–778. doi: 10.1007/s00417-020-04613-y
  • Zhou M, Yu Q, Huang K, et al. Towards robotic-assisted subretinal injection: a hybrid parallel–serial robot system design and preliminary evaluation. IEEE Trans Ind Electron. 2019;67(8):6617–6628. doi: 10.1109/TIE.2019.2937041
  • Gijbels A, Smits J, Schoevaerdts L, et al. In-human robot-assisted retinal vein cannulation, a world first. Ann Biomed Eng. 2018;46(10):1676–1685. doi: 10.1007/s10439-018-2053-3
  • Willekens K, Gijbels A, Schoevaerdts L, et al. Robot‐assisted retinal vein cannulation in an in vivo porcine retinal vein occlusion model. Acta Ophthalmol. 2017;95(3):270–275. doi: 10.1111/aos.13358
  • Wilson JT, Gerber MJ, Prince SW, et al. Intraocular robotic interventional surgical system (iriss): mechanical design, evaluation, and master–slave manipulation. Int J Med Robotics Comput Assist Surg. 2018;14(1):e1842. doi: 10.1002/rcs.1842
  • Ullrich F, Bergeles C, Pokki J, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Investig Ophthalmol Vis Sci. 2013;54(4):2853–2863. doi: 10.1167/iovs.13-11825
  • Kummer MP, Abbott JJ, Kratochvil BE, et al. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Rob. 2010;26(6):1006–1017. doi: 10.1109/TRO.2010.2073030
  • Chen C-W, Chen H-C, Yang H-Y, et al. intraOcular RoBotic Interventional System (iORBIS): mechanical design for distally-actuated instrument insertion and automatic tool change. Mech Mach Theory. 2022;167:104568. doi: 10.1016/j.mechmachtheory.2021.104568
  • Padhy SK, Takkar B, Narayanan R, et al. Voretigene neparvovec and gene therapy for leber’s congenital amaurosis: review of evidence to date. Appl Clin Genet. 2020;13:179–208. doi: 10.2147/TACG.S230720
  • Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRpe65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet (London, England). 2017;390(10097):849–860. doi: 10.1016/S0140-6736(17)31868-8
  • Gelfman CM, Grishanin R, Bender KO, et al. Comprehensive preclinical assessment of ADVM-022, an intravitreal anti-VEGF gene therapy for the treatment of neovascular AMD and diabetic macular edema. J Ocul Pharmacol Ther. 2021;37(3):181–190. doi: 10.1089/jop.2021.0001
  • Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, et al. Subretinal injection techniques for retinal disease: a review. J Clin Med. 2022;11(16):4717. doi: 10.3390/jcm11164717
  • Olufsen ME, Spindler L, Sørensen NB, et al. Controlled subretinal injection pressure prevents damage in pigs. Ophthalmol J int d’ophtalmologie Int j ophthalmol Zeitschrift fur Augenheilkunde. 2022;245(3):285–294. doi: 10.1159/000522110
  • Cehajic-Kapetanovic J, Xue K, Edwards TL, et al. First-in-human robot-assisted subretinal drug delivery under local anesthesia. Am J Ophthalmol. 2022;237:104–113. doi: 10.1016/j.ajo.2021.11.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.