76
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Lenstar LS900 vs EchoScan US-800: comparison between optical and ultrasound biometry with and without contact lenses and its relationship with other biometric parameters

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 681-690 | Received 20 Feb 2023, Accepted 15 Jun 2023, Published online: 07 Jul 2023

References

  • Song AL. Optical Biometry. In: Rizzuti A. StatPearls. 2022. StatPearls Publishing. [Cited 2022 Oct 20]. https://www.ncbi.nlm.nih.gov/books/NBK580549/
  • Cheng SM, Zhang JS, Shao X, et al. Repeatability of a new swept-source optical coherence tomographer and agreement with other three optical biometers. Graefes Arch Clin Exp Ophthalmol. 2022;260(7):2271–2281. doi: 10.1007/s00417-022-05579-9
  • Gutierrez-Vazquez J, Perez-Sanchez LI, Satrustegui-Lapetra M, et al. Measurement of the anterior chamber depth and ocular axial length: transpalpebral B-mode ultrasound using an 18-MHz linear probe compared with the IOL Master 500. Med Ultrason. 2021;23(1):48–54. doi: 10.11152/mu-2676
  • Prado-Serrano A, Nava-Hernández NG. Cálculo del poder dióptrico de lentes intraoculares ¿Cómo evitar la sorpresa refractiva? Rev Mex Ofltamol. 2009;83(5):272–280.
  • Kim M, Han ES. Comparison of optical low coherence interferometry and Scheimpflug imaging combined with partial coherence interferometry biometers in cataract eyes. Saudi J Ophthalmol. 2022;36(2):189–194. doi: 10.4103/sjopt.sjopt_50_21
  • Huang J, McAlinden C, Huang Y, et al. Meta-analysis of optical low-coherence reflectometry versus partial coherence interferometry biometry. Sci Rep. 2017;7(1):43414. doi: 10.1038/srep43414
  • Scholtz SK, Langenbucher A. Calculating the human eye-the evolution of biometry for cataract surgery. Klin Monbl Augenheilkd. 2019;237(8):933–937. doi: 10.1055/a-1002-0136
  • Shi Q, Wang G-Y, Cheng Y-H, et al. Comparison of IOL-Master 700 and IOL-Master 500 biometers in ocular biological parameters of adolescents. Int J Ophthalmol. 2021;14(7):1013–1017. doi: 10.18240/ijo.2021.07.08
  • Rauscher FG, Francke M, Hiemisch A, et al. Ocular biometry in children and adolescents from 4 to 17 years: a cross-sectional study in central Germany. Ophthalmic Physiol Opt. 2021;41(3):496–511. doi: 10.1111/opo.12814
  • Ferrer-Blasco T, Esteve-Taboada JJ, Dominguez-Vicent A, et al. Effect of contact lenses on ocular biometric measurements based on swept-source optical coherence tomography. Arq Bras Oftalmol. 2019;82(2):129–135. doi: 10.5935/0004-2749.20190020
  • Sanz Diez P, Yang L-H, Lu M-X, et al. LMS parameters, percentile, and Z-score growth curves for axial length in Chinese schoolchildren in Wuhan. Sci Rep. 2022;12(1):4850. doi: 10.1038/s41598-022-08907-5
  • Hashemi H, Pakzad R, Khabazkhoob M, et al. Ocular biometrics as a function of age, gender, height, weight, and its association with spherical equivalent in children. Eur J Ophthalmol. 2021;31(2):688–697. doi: 10.1177/1120672120908722
  • Wei S, Sun Y, Sm L, et al. Effect of body stature on refraction and ocular biometry in Chinese young adults: The Anyang University students eye study. Clin Exp Optom. 2021;104(2):201–206. doi: 10.1111/cxo.13137
  • Shinojima A, Kurihara T, Mori K, et al. Association between ocular axial length and anthropometrics of Asian adults. BMC Res Notes. 2021;14(1):328. doi: 10.1186/s13104-021-05745-y
  • van der Heijde GL, Meinema AJ, Vlaming MS, et al. Digital A-scan ultrasonography used to measure ocular distances. Am J Ophthalmol. 1977;83(2):276–277. doi: 10.1016/0002-9394(77)90628-6
  • Cruysberg LP, Doors M, Verbakel F, et al. Evaluation of the Lenstar LS 900 non-contact biometer. Br J Ophthalmol. 2010;94(1):106–110. doi: 10.1136/bjo.2009.161729
  • Liampa Z, Kynigopoulos M, Pallas G, et al. Comparison of two partial coherence interferometry devices for ocular biometry. Klin Monbl Augenheilkd. 2010;227(4):285–288. doi: 10.1055/s-0029-1245182
  • Sihota R, Kamble N, Sharma AK, et al. ‘Van Herick Plus’: a modified grading scheme for the assessment of peripheral anterior chamber depth and angle. Br J Ophthalmol. 2019;103(7):960–965. doi: 10.1136/bjophthalmol-2018-312132
  • Munteanu GZ, Munteanu ZVI, Roiu G, et al. Detection of intraocular hypertension during opportunity screening (Check-Up Medical Inspections). J Pers Med. 2022;12(5):777. doi: 10.3390/jpm12050777
  • Garcia-Queiruga J, Pena-Verdeal H, Sabucedo-Villamarin B, et al. Analysis of the differences in ocular surface damage and inflammatory signs between healthy and evaporative dry eye participants. Ocul Immunol Inflamm. 2022;19(5):1–8. doi: 10.1080/09273948.2022.2075398
  • Aktas S, Aktas H, Tetikoglu M, et al. Refractive results using a new optical biometry device: comparison with ultrasound biometry data. Medicine. 2015;94(48):e2169. doi: 10.1097/MD.0000000000002169
  • Piñero DP, López-Navarro A, Cabezos I, et al. Corneal topographic and aberrometric measurements obtained with a multidiagnostic device in healthy eyes: intrasession repeatability. J Ophthalmol. 2017;2149145:1–9. doi: 10.1155/2017/2149145
  • García‐Resúa C, Pena‐Verdeal H, Miñones M, et al. Reliability of the non‐contact tono‐pachymeter Tonopachy NT‐530P in healthy eyes. Clin Exp Optom. 2013;96(3):286–294. doi: 10.1111/j.1444-0938.2012.00818.x
  • Fayed MA, Chen TC. Pediatric intraocular pressure measurements: Tonometers, central corneal thickness, and anesthesia. Surv Ophthalmol. 2019;64(6):810–825. doi: 10.1016/j.survophthal.2019.05.003
  • Kuo Y-C, Wang J-H, Chiu C-J. Comparison of open-field autorefraction, closed-field autorefraction, and retinoscopy for refractive measurements of children and adolescents in Taiwan. J Formos Med Assoc. 2020;119(8):1251–1258. doi: 10.1016/j.jfma.2020.04.009
  • Hadush MY, Berhe AH, Medhanyie AA. Foot length, chest and head circumference measurements in detection of low birth weight neonates in Mekelle, Ethiopia: a hospital based cross sectional study. BMC Pediatr. 2017;17(1):111. doi: 10.1186/s12887-017-0866-0
  • O’Donnell C, Hartwig A, Radhakrishnan HJCL, et al. Correlations between refractive error and biometric parameters in human eyes using the LenStar 900. Cont Lens Anterior Eye. 2011;34(1):26–31. doi: 10.1016/j.clae.2010.10.006
  • Del Aguila-Carrasco AJ, Dominguez-Vicent A, Perez-Vives C, et al. Assessment of modifications in thickness, curvatures, and volume upon the cornea caused by disposable soft contact lens wear. Eur J Ophthalmol. 2015;25(5):385–390. doi: 10.5301/ejo.5000592
  • Armstrong RA, Davies LN, Dunne MC, et al. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol Opt. 2011;31(2):123–136. doi: 10.1111/j.1475-1313.2010.00815.x
  • Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–310. doi: 10.1016/S0140-6736(86)90837-8
  • Carkeet A. Exact parametric confidence intervals for Bland-Altman limits of agreement. Optom Vis Sci. 2015;92(3):e71–80. doi: 10.1097/OPX.0000000000000513
  • Dunn G. Design and analysis of reliability studies: the statistical evaluation of measurement errors. (NY): London: Oxford University Press: Edward Arnold Publishers; 1989.
  • Gursoy H, Sahin A, Basmak H, et al. Lenstar versus ultrasound for ocular biometry in a pediatric population. Optom Vis Sci. 2011;88(8):912–919. doi: 10.1097/OPX.0b013e31821cc4d6
  • She Z, Hung L-F, Beach KM, et al. Comparing low-coherence interferometry and A-scan ultrasonography in measuring ocular axial dimensions in young rhesus monkeys. Exp Eye Res. 2022;217:108937. doi: 10.1016/j.exer.2022.108937
  • Wang Q, Ji X, Lu D, et al. Comparison of A-Scan ultrasonography and the Lenstar optical biometer in Guinea pig eyes. Exp Eye Res. 2021;207:108578. doi: 10.1016/j.exer.2021.108578
  • Buckhurst PJ, Wolffsohn JS, Shah S, et al. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol. 2009;93(7):949–953. doi: 10.1136/bjo.2008.156554
  • Lewis JR, Knellinger AE, Mahmoud AM, et al. Effect of soft contact lenses on optical measurements of axial length and keratometry for biometry in eyes with corneal irregularities. Invest Ophthalmol Vis Sci. 2008;49(8):3371–3378. doi: 10.1167/iovs.07-1247
  • Lee KE, Klein BE, Klein R, et al. Association of age, stature, and education with ocular dimensions in an older white population. Arch Ophthalmol. 2009;127(1):88–93. doi: 10.1001/archophthalmol.2008.521
  • Roy A, Kar M, Mandal D, et al. Variation of axial ocular dimensions with age, sex, height, BMI-and their relation to refractive status. J Clin Diagn Res. 2015;9(1):AC01. doi: 10.7860/JCDR/2015/10555.5445

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.