266
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanical ventilation in patients with acute respiratory distress syndrome: current status and future perspectives

, , , ORCID Icon, & ORCID Icon
Pages 905-917 | Received 03 Jul 2023, Accepted 01 Sep 2023, Published online: 07 Sep 2023

References

  • Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23). doi: 10.1001/jama.2012.5669
  • Grasselli G, Calfee CS, Camporota L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive care Med. doi: 10.1007/s00134-023-07050-7
  • Gattinoni L, Marini JJ. Isn’t it time to abandon ARDS? The COVID-19 lesson. Crit Care Lond Engl. 2021;25(1):326. doi: 10.1186/s13054-021-03748-6
  • Thille AW, Esteban A, Fernández-Segoviano P, et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187(7):761–767. doi: 10.1164/rccm.201211-1981OC
  • Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med. 2016;193(1):52–59. doi: 10.1164/rccm.201503-0584OC
  • Rochwerg B, Einav S, Chaudhuri D, et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive care Med. 2020;46(12):2226–2237. doi: 10.1007/s00134-020-06312-y
  • Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788. doi: 10.1001/jama.2016.0291
  • Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome. In: D16. Advancing the science of ARDS and acute respiratory failure. Am J Respir Crit Care Med. 2023;207:A6229. doi: 10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A6229
  • Battaglini D, Fazzini B, Silva PL, et al. Challenges in ARDS definition, management, and identification of effective personalized therapies. J Clin Med. 2023;12(4):1381. doi: 10.3390/jcm12041381
  • Aslam TN, Klitgaard TL, Hofsø K, et al. Spontaneous versus controlled mechanical ventilation in patients with acute respiratory distress syndrome. Curr Anesthesiol Rep. 2021;11(2):85–91. doi: 10.1007/s40140-021-00443-8
  • Matthay MA, Arabi YM, Siegel ER, et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive care Med. 2020;46(12):2136–2152. doi: 10.1007/s00134-020-06296-9
  • Brower RG, Matthay MA, Morris A, et al. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801
  • Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137(5):1159–1164. doi: 10.1164/ajrccm/137.5.1159
  • Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116:9S–15S. doi: 10.1378/chest.116.suppl_1.9S-a
  • Putensen C, Theuerkauf N, Zinserling J, et al. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566–576. doi: 10.7326/0003-4819-151-8-200910200-00011
  • Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69. doi: 10.1186/s13613-019-0540-9
  • Needham DM, Yang T, Dinglas VD, et al. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Am J Respir Crit Care Med. 2015;191(2):177–185. doi: 10.1164/rccm.201409-1598OC
  • Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive care Med. 2016;42(12):1865–1876. doi: 10.1007/s00134-016-4571-5
  • Yamamoto R, Okazaki SR, Fujita Y, et al. Usefulness of low tidal volume ventilation strategy for patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Sci Rep. 2022;12(1):9331. doi: 10.1038/s41598-022-13224-y
  • Walkey AJ, Goligher EC, Del Sorbo L, et al. Low tidal volume versus non–volume-limited strategies for patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S271–S279. doi: 10.1513/AnnalsATS.201704-337OT
  • Fuller BM, Ferguson IT, Mohr NM, et al. Lung-protective ventilation Initiated in the Emergency department (LOV-ED): a quasi-experimental, before-after trial. Ann Emerg Med. 2017;70(3):406–418.e4. doi: 10.1016/j.annemergmed.2017.01.013
  • Pelosi P, Ball L, Barbas CSV, et al. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care. 2021;25(1):250. doi: 10.1186/s13054-021-03686-3
  • Villar J, Martín-Rodríguez C, Domínguez-Berrot AM, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45(5):843–850. doi: 10.1097/CCM.0000000000002330
  • Battaglini D, Rocco PRM, Pelosi P. New insights in mechanical ventilation and adjunctive therapies in ARDS. Signa Vitae. 2022;18(5):1–11. doi: 10.22514/sv.2022.035
  • Battaglini D, Sottano M, Ball L, et al. Ten Golden rules for individualized mechanical ventilation in acute respiratory distress syndrome. J Intensive Med. 2021;1(1):42–51. doi: 10.1016/j.jointm.2021.01.003
  • Grieco DL, Menga LS, Cesarano M, et al. Phenotypes of patients with COVID-19 who have a positive clinical response to helmet noninvasive ventilation. Am J Respir Crit Care Med. 2022;205(3):360–364. doi: 10.1164/rccm.202105-1212LE
  • Muscedere JG, Mullen JB, Gan K, et al. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149(5):1327–1334. doi: 10.1164/ajrccm.149.5.8173774
  • Bruhn A, Bugedo D, Riquelme F, et al. Tidal volume is a major determinant of cyclic recruitment-derecruitment in acute respiratory distress syndrome. Minerva Anestesiol. 2011;77(4):418–426.
  • Retamal J, Libuy J, Jiménez M, et al. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment - derecruitment and hyperinflation. Crit Care Lond Engl. 2013;17(1):R16. doi: 10.1186/cc12487
  • Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(11):1429–1438. doi: 10.1164/rccm.201610-2035CI
  • Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–2136. doi: 10.1056/NEJMra1208707
  • Magder S, Slobod D, Assanangkornchai N. Mechanical ventilation in the obese patient: compliance, pleural pressure, and driving pressure. Am J Respir Crit Care Med. 2021;203(5):534–536. doi: 10.1164/rccm.202009-3607ED
  • Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9(6):607. doi: 10.1186/cc3877
  • Fougères E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–807. doi: 10.1097/CCM.0b013e3181c587fd
  • Mekontso Dessap A, Boissier F, Charron C, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive care Med. 2016;42(5):862–870. doi: 10.1007/s00134-015-4141-2
  • De Santis Santiago R, Teggia Droghi M, Fumagalli J, et al. High pleural pressure prevents alveolar overdistension and hemodynamic collapse in acute respiratory distress syndrome with class III obesity. A clinical trial. Am J Respir Crit Care Med. 2021;203(5):575–584. doi: 10.1164/rccm.201909-1687OC
  • Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865. doi: 10.1001/jama.2010.218
  • Goligher EC, Kavanagh BP, Rubenfeld GD, et al. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med. 2014;190(1):70–76. doi: 10.1164/rccm.201404-0688OC
  • Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–336. doi: 10.1056/NEJMoa032193
  • Mercat A, Richard JCM, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646. doi: 10.1001/jama.299.6.646
  • Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637. doi: 10.1001/jama.299.6.637
  • Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335. doi: 10.1001/jama.2017.14171
  • Hodgson CL, Cooper DJ, Arabi Y, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med. 2019;200(11):1363–1372. doi: 10.1164/rccm.201901-0109OC
  • Ball L, Serpa Neto A, Trifiletti V, et al. Effects of higher PEEP and recruitment manoeuvres on mortality in patients with ARDS: a systematic review, meta-analysis, meta-regression and trial sequential analysis of randomized controlled trials. Intensive Care Med Exp. 2020;8(S1):39. doi: 10.1186/s40635-020-00322-2
  • Dianti J, Tisminetzky M, Ferreyro BL, et al. Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome: a systematic review and network meta-analysis. Am J Respir Crit Care Med. 2022;205(11):1300–1310. doi: 10.1164/rccm.202108-1972OC
  • Chiumello D, Cressoni M, Carlesso E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–264. doi: 10.1097/CCM.0b013e3182a6384f
  • Constantin JM, Jabaudon M, Lefrant JY, et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019;7(10):870–880. doi: 10.1016/S2213-2600(19)30138-9
  • Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure–guided strategy vs an empirical high PEEP-F io 2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321(9):846. doi: 10.1001/jama.2019.0555
  • Araos J, Alegria L, Garcia A, et al. Effect of positive end-expiratory pressure on lung injury and haemodynamics during experimental acute respiratory distress syndrome treated with extracorporeal membrane oxygenation and near-apnoeic ventilation. Br J Anaesth. 2021;127(5):807–814. doi: 10.1016/j.bja.2021.07.031
  • Barrot L, Asfar P, Mauny F, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020;382(11):999–1008. doi: 10.1056/NEJMoa1916431
  • Sutherasan Y, Vargas M, Pelosi P. Protective mechanical ventilation in the non-injured lung: review and meta-analysis. Crit Care. 2014;18(2):211. doi: 10.1186/cc13778
  • Neto AS, Simonis FD, Barbas CSV, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–2163. doi: 10.1097/CCM.0000000000001189
  • Mora Carpio AL, Mora JI. Ventilator management. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Jun 2].
  • Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110(5):556–565. doi: 10.1164/arrd.1974.110.5.556
  • Henderson WR, Chen L, Amato MBP, et al. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(7):822–833. doi: 10.1164/rccm.201612-2495CI
  • Lanspa MJ, Peltan ID, Jacobs JR, et al. Driving pressure is not associated with mortality in mechanically ventilated patients without ARDS. Crit Care. 2019;23(1):424. doi: 10.1186/s13054-019-2698-9
  • Silva PL, Rocco PRM. The basics of respiratory mechanics: ventilator-derived parameters. Ann Transl Med. 2018;6(19):376–376. doi: 10.21037/atm.2018.06.06
  • Pelosi P, Ball L. Should we titrate ventilation based on driving pressure? Maybe not in the way we would expect. Ann Transl Med. 2018;6(19):389–389. doi: 10.21037/atm.2018.09.48
  • Chiumello D, Carlesso E, Brioni M, et al. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20(1):276. doi: 10.1186/s13054-016-1446-7
  • Tejerina E, Pelosi P, Muriel A, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341–345. doi: 10.1016/j.jcrc.2016.11.010
  • Pereira Romano ML, Maia IS, Laranjeira LN, et al. Driving pressure–limited strategy for patients with acute respiratory distress syndrome. A pilot randomized clinical trial. Ann Am Thorac Soc. 2020;17(5):596–604. doi: 10.1513/AnnalsATS.201907-506OC
  • Goodwin AJ, Brinton DL, Terry C, et al. Driving pressure, elastance, and outcomes in a real-world setting: a bi-center analysis of electronic health record data. Crit Care Explor. 2023;5(3):e0877. doi: 10.1097/CCE.0000000000000877
  • Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639
  • Meier A, Sell RE, Malhotra A. Driving pressure for ventilation of patients with acute respiratory distress syndrome. Anesthesiology. 2020;132(6):1569–1576. doi: 10.1097/ALN.0000000000003195
  • Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2021;204(3):303–311. doi: 10.1164/rccm.202009-3467OC
  • Griffiths MJD, McAuley DF, Perkins GD, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6(1):e000420. doi: 10.1136/bmjresp-2019-000420
  • Aoyama H, Pettenuzzo T, Aoyama K, et al. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2018;46(2):300–306. doi: 10.1097/CCM.0000000000002838
  • Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–1108. doi: 10.1097/ALN.0000000000001056
  • Romitti F, Busana M, Palumbo MM, et al. Mechanical power thresholds during mechanical ventilation: an experimental study. Physiol Rep. 2022;10(6). doi: 10.14814/phy2.15225
  • Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive care Med. 2018;44(11):1914–1922. doi: 10.1007/s00134-018-5375-6
  • Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24(1):246. doi: 10.1186/s13054-020-02963-x
  • Parhar KKS, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study. Ann Am Thorac Soc. 2019;16(10):1263–1272. doi: 10.1513/AnnalsATS.201812-910OC
  • Silva PL, Ball L, Rocco PRM, et al. Physiological and pathophysiological consequences of mechanical ventilation. Semin Respir Crit Care Med. 2022;43(3):321–334. doi: 10.1055/s-0042-1744447
  • Chiu LC, Lin SW, Chuang LP, et al. Mechanical power during extracorporeal membrane oxygenation and hospital mortality in patients with acute respiratory distress syndrome. Crit Care. 2021;25(1):13. doi: 10.1186/s13054-020-03428-x
  • Marini JJ, Rocco PRM. Which component of mechanical power is most important in causing VILI? Crit Care. 2020;24(1):39. doi: 10.1186/s13054-020-2747-4
  • Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive care Med. 2016;42(10):1567–1575. doi: 10.1007/s00134-016-4505-2
  • Díaz F, González-Dambrauskas S, Cristiani F, et al. Driving pressure and normalized energy transmission calculations in mechanically ventilated children without lung disease and pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2021;22(10):870–878. doi: 10.1097/PCC.0000000000002780
  • Gattinoni L, Collino F, Camporota L. Mechanical power: meaning, uses and limitations. Intensive care Med. 2023; 49(4):465–467. doi: 10.1007/s00134-023-06991-3
  • Battaglini D, Robba C, Ball L, et al. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth. 2021;127(3):353–364. doi: 10.1016/j.bja.2021.05.024
  • Yoshida T, Fujino Y, Amato MBP, et al. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, Mechanisms, And Management Am J Respir Crit Care Med. 2017;195(8):985–992. doi: 10.1164/rccm.201604-0748CP
  • Cruz FF, Ball L, Rocco PRM, et al. Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better. Expert Rev Respir Med. 2018;12(5):403–414. doi: 10.1080/17476348.2018.1457954
  • Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013;41(2):536–545. doi: 10.1097/CCM.0b013e3182711972
  • Pinto EF, Santos RS, Antunes MA, et al. Static and dynamic transpulmonary driving pressures affect lung and diaphragm injury during pressure-controlled versus pressure-support ventilation in experimental mild lung injury in rats. Anesthesiology. 2020;132(2):307–320. doi: 10.1097/ALN.0000000000003060
  • Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–1335. doi: 10.1056/NEJMoa070447
  • Hudson MB, Smuder AJ, Nelson WB, et al. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40(4):1254–1260. doi: 10.1097/CCM.0b013e31823c8cc9
  • Van Haren F, Pham T, Brochard L, et al. Spontaneous breathing in early acute respiratory distress syndrome: insights from the large observational study to UNderstand the global impact of severe acute respiratory FailurE study. Crit Care Med. 2019;47(2):229–238. doi: 10.1097/CCM.0000000000003519
  • Saddy F, Oliveira GP, Garcia CSNB, et al. Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive care Med. 2010;36(8):1417–1426. doi: 10.1007/s00134-010-1808-6
  • Tasaka S, Ohshimo S, Takeuchi M, et al. ARDS clinical practice guideline 2021. J Intensive Care. 2022;10(1):32. doi: 10.1186/s40560-022-00615-6
  • De Magalhães RF, Cruz DG, Antunes MA, et al. Time-controlled adaptive ventilation versus volume-controlled ventilation in experimental pneumonia. Critical Care Medicine. 2021;49(1):140–150. doi: 10.1097/CCM.0000000000004675
  • Nieman GF, Al-Khalisy H, Kollisch-Singule M, et al. A physiologically informed strategy to effectively open, stabilize, and protect the acutely injured lung. Front Physiol. 2020;11:227. doi: 10.3389/fphys.2020.00227
  • Nieman GF, Gatto LA, Andrews P, et al. Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: physiologically informed modification of airway pressure release ventilation. Ann Intensive Care. 2020;10(1):3. doi: 10.1186/s13613-019-0619-3
  • Da Cruz DG, De Magalhães RF, Padilha GA, et al. Impact of positive biphasic pressure during low and high inspiratory efforts in Pseudomonas aeruginosa-induced pneumonia. PLoS One. 2021;16(2):e0246891. doi: 10.1371/journal.pone.0246891
  • Thompson AF, Moraes L, Rocha NN, et al. Impact of different frequencies of controlled breath and pressure-support levels during biphasic positive airway pressure ventilation on the lung and diaphragm in experimental mild acute respiratory distress syndrome. PLoS One. 2021;16(8):e0256021. doi: 10.1371/journal.pone.0256021
  • Zhou Y, Jin X, Lv Y, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive care Med. 2017;43(11):1648–1659. doi: 10.1007/s00134-017-4912-z
  • Zhong X, Wu Q, Yang H, et al. Airway pressure release ventilation versus low tidal volume ventilation for patients with acute respiratory distress syndrome/acute lung injury: a meta-analysis of randomized clinical trials. Ann Transl Med. 2020;8(24):1641–1641. doi: 10.21037/atm-20-6917
  • Kollisch-Singule M, Andrews P, Satalin J, et al. The time-controlled adaptive ventilation protocol: mechanistic approach to reducing ventilator-induced lung injury. Eur Respir Rev. 2019;28(152):180126. doi: 10.1183/16000617.0126-2018
  • Silva PL, Cruz FF, Samary CDS, et al. Biological response to time-controlled adaptive ventilation depends on acute respiratory distress syndrome etiology. Crit Care Med. 2018;46(6):e609–e617. doi: 10.1097/CCM.0000000000003078
  • Protti A, Cressoni M, Santini A, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183(10):1354–1362. doi: 10.1164/rccm.201010-1757OC
  • Kacmarek RM, Villar J, Parrilla D, et al. Neurally adjusted ventilatory assist in acute respiratory failure: a randomized controlled trial. Intensive care Med. 2020;46(12):2327–2337. doi: 10.1007/s00134-020-06181-5
  • Diniz-Silva F, Moriya HT, Alencar AM, et al. Neurally adjusted ventilatory assist vs. pressure support to deliver protective mechanical ventilation in patients with acute respiratory distress syndrome: a randomized crossover trial. Ann Intensive Care. 2020;10(1):18. doi: 10.1186/s13613-020-0638-0
  • Wu M, Yuan X, Liu L, et al. Neurally adjusted ventilatory assist vs. conventional mechanical ventilation in adults and children with acute respiratory failure: a systematic review and meta-analysis. Front Med. 2022;9:814245. doi: 10.3389/fmed.2022.814245
  • Di Mussi R, Spadaro S, Mirabella L, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016;20(1):1. doi: 10.1186/s13054-015-1178-0
  • Demoule A, Hill N, Navalesi P. Can we prevent intubation in patients with ARDS? Intensive care Med. 2016;42(5):768–771. doi: 10.1007/s00134-016-4323-6
  • Kacmarek RM, Villar J, Sulemanji D, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44(1):32–42. doi: 10.1097/CCM.0000000000001383
  • Schmidt J, Wenzel C, Mahn M, et al. Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: a controlled interventional trial in healthy pigs. Eur J Anaesthesiol. 2018;35(10):736–744. doi: 10.1097/EJA.0000000000000819
  • Barnes T, Van Asseldonk D, Enk D. Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows – flow-controlled ventilation (FCV). Med Hypotheses. 2018;121:167–176. doi: 10.1016/j.mehy.2018.09.038
  • Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103
  • Romero CM, Cornejo RA, Gálvez LR, et al. Extended prone position ventilation in severe acute respiratory distress syndrome: a pilot feasibility study. J Crit Care. 2009;24(1):81–88. doi: 10.1016/j.jcrc.2008.02.005
  • Guérin C, Beuret P, Constantin JM, et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS prone position Network) study. Intensive care Med. 2018;44(1):22–37. doi: 10.1007/s00134-017-4996-5
  • Giani M, Martucci G, Madotto F, et al. Prone positioning during venovenous extracorporeal membrane oxygenation in acute respiratory distress syndrome. A multicenter cohort study and propensity-matched analysis. Ann Am Thorac Soc. 2021;18(3):495–501. doi: 10.1513/AnnalsATS.202006-625OC
  • Carsetti A, Damia Paciarini A, Marini B, et al. Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective. Crit Care Lond Engl. 2020;24(1):225. doi: 10.1186/s13054-020-02956-w
  • Goligher EC, Hodgson CL, Adhikari NKJ, et al. Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Suppl 4):S304–S311. doi: 10.1513/AnnalsATS.201704-340OT
  • Rocco PR, Pelosi P, De Abreu MG. Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med. 2010;4(4):479–489. doi: 10.1586/ers.10.43
  • Del Sorbo L, Tonetti T, Ranieri VM. Alveolar recruitment in acute respiratory distress syndrome: should we open the lung (no matter what) or may accept (part of) the lung closed? Intensive care Med. 2019;45(10):1436–1439. doi: 10.1007/s00134-019-05734-7
  • Gragossian A, Siuba MT. Acute respiratory distress syndrome. Emerg Med Clin North Am. 2022;40(3):459–472. doi: 10.1016/j.emc.2022.05.002
  • Guérin C, Mancebo J. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: yes. Intensive care Med. 2015;41(12):2195–2197. doi: 10.1007/s00134-015-3918-7
  • Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372
  • Moss M, Huang DT, Brower RG, et al. The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008. doi: 10.1056/NEJMoa1901686
  • ATN H, Patolia S, Guervilly C. Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. J Intensive Care. 2020;8(1):12. doi: 10.1186/s40560-020-0431-z
  • Griffiths MJD, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353(25):2683–2695. doi: 10.1056/NEJMra051884
  • Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. CD002787 2016 12;2018(12). doi: 10.1002/14651858.CD002787.pub3
  • Alessandri F, Pugliese F, Ranieri VM. The role of rescue therapies in the treatment of severe ARDS. Respir Care. 2018;63(1):92–101. doi: 10.4187/respcare.05752
  • Battaglini D, Robba C, Pelosi P, et al. Treatment for acute respiratory distress syndrome in adults: a narrative review of phase 2 and 3 trials. Expert Opin Emerg Drugs. 2022;27(2):187–209. doi: 10.1080/14728214.2022.2105833
  • Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensive care Med. 2013;39(5):847–856. doi: 10.1007/s00134-012-2787-6
  • Morris AH, Wallace CJ, Menlove RL, et al. Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149(2):295–305. doi: 10.1164/ajrccm.149.2.8306022
  • Schmidt M, Jaber S, Zogheib E, et al. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care. 2018;22(1):122. doi: 10.1186/s13054-018-2038-5
  • Combes A, Fanelli V, Pham T, et al. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive care Med. 2019;45(5):592–600. doi: 10.1007/s00134-019-05567-4
  • Fitzgerald M, Millar J, Blackwood B, et al. Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review. Crit Care. 2014;18(3):222. doi: 10.1186/cc13875
  • Moerer O, Harnisch LO, Barwing J, et al. Minimal-flow ECCO2R in patients needing CRRT does not facilitate lung-protective ventilation. J Artif Organs. 2019;22(1):68–76. doi: 10.1007/s10047-018-1068-8
  • Combes A, Auzinger G, Capellier G, et al. ECCO2R therapy in the ICU: consensus of a European round table meeting. Crit Care. 2020;24(1):490. doi: 10.1186/s13054-020-03210-z
  • Peek GJ, Clemens F, Elbourne D, et al. CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv Res. 2006;6(1):163. doi: 10.1186/1472-6963-6-163
  • Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–1975. doi: 10.1056/NEJMoa1800385
  • Sameed M, Meng Z, Marciniak ET. EOLIA trial: the future of extracorporeal membrane oxygenation in acute respiratory distress syndrome therapy? Breathe. 2019;15(3):244–246. doi: 10.1183/20734735.0363-2018
  • Serpa Neto A, Schmidt M, Azevedo LC, et al. Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis: mechanical ventilation during ECMO. Intensive care Med. 2016;42(11):1672–1684. doi: 10.1007/s00134-016-4507-0
  • Araos J, Alegria L, Garcia P, et al. Near-apneic ventilation decreases lung injury and fibroproliferation in an acute respiratory distress syndrome model with extracorporeal membrane oxygenation. Am J Respir Crit Care Med. 2019;199(5):603–612. doi: 10.1164/rccm.201805-0869OC
  • Singh SP, Hote MP. Ventilatory management of patients on ECMO. Indian J Thorac Cardiovasc Surg. 2021;37(S2):248–253. doi: 10.1007/s12055-020-01021-z
  • Schmidt M, Pham T, Arcadipane A, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome. An international multicenter prospective cohort. Am J Respir Crit Care Med. 2019;200(8):1002–1012. doi: 10.1164/rccm.201806-1094OC
  • Teijeiro-Paradis R, Pesenti A, Fan E. Weaning from veno-venous ECMO: lessons from 60 years of weaning from mechanical ventilation. Am J Respir Crit Care Med. 2022;206(8):928–930. doi: 10.1164/rccm.202206-1104ED
  • López Sanchez M. Ventilación mecánica en pacientes tratados con membrana de oxigenación extracorpórea (ECMO). Med Intensiva. 2017;41(8):491–496. doi: 10.1016/j.medin.2016.12.007
  • Persichini R, Lai C, Teboul JL, et al. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care. 2022;26(1):150. doi: 10.1186/s13054-022-04024-x
  • De Carvalho EB, Battaglini D, Robba C, et al. Fluid management strategies and their interaction with mechanical ventilation: from experimental studies to clinical practice. Intensive Care Med Exp. 2023;11(1):44. doi: 10.1186/s40635-023-00526-2
  • Grbler MR, Wigger O, Berger D, et al. Basic concepts of heart-lung interactions during mechanical ventilation. Swiss Med Wkly. [cited 2023 Sep 12]. doi: 10.4414/smw.2017.14491
  • West JB. Understanding pulmonary gas exchange: ventilation-perfusion relationships. J Appl Physiol. 2004;97(5):1603–1604. doi: 10.1152/classicessays.00024a.2004
  • Jardin F, Genevray B, Brun-Ney D, et al. Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest. 1985;88(5):653–658. doi: 10.1378/chest.88.5.653
  • Van Den Berg PCM, Jansen JRC, Pinsky MR. Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. Journal Of Applied Physiology. 2002;92(3):1223–1231. doi: 10.1152/japplphysiol.00487.2001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.