79
Views
0
CrossRef citations to date
0
Altmetric
Device Profile

Hydrus microstent for the treatment of primary open-angle glaucoma: overview of its safety and efficacy

ORCID Icon, , & ORCID Icon
Pages 1009-1025 | Received 11 May 2023, Accepted 13 Sep 2023, Published online: 28 Sep 2023

References

  • Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002 Oct 1;120(10):1268–1279.
  • Gaasterland DE, Ederer F, Beck A, et al. The advanced glaucoma intervention study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130(4):429–440.
  • Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmol. 2001;108(11):1943–1953. doi: 10.1016/S0161-6420(01)00873-9
  • Chauhan BC, Mikelberg FS, Artes PH, et al. Canadian glaucoma study: 3. Impact of risk factors and intraocular pressure reduction on the rates of visual field change. Arch Ophthalmol. 2010 Oct;128(10):1249–1255.
  • Tsai JC, McClure CA, Ramos SE, et al. Compliance barriers in glaucoma: a systematic classification. J Glaucoma Internet. 2003 Oct [cited 2023 Jan 3];12(5):393–398. https://pubmed.ncbi.nlm.nih.gov/14520147/
  • Wolfram C, Stahlberg E, Pfeiffer N. Patient-reported nonadherence with glaucoma therapy. J Ocul Pharmacol Ther Internet. 2019 May 1 [cited 2023 Jan 3]; 35(4):223–228. doi: 10.1089/jop.2018.0134
  • Chawla A, Mcgalliard JN, Batterbury M. Use of eyedrops in glaucoma: how can we help to reduce non-compliance? Acta Ophthalmol Scand Internet. 2007 Jun [cited 2023 Jan 3];85(4):464. doi: 10.1111/j.1600-0420.2007.00882.x
  • Baudouin C, Pisella PJ, Fillacier K, et al. Ocular surface inflammatory changes induced by topical antiglaucoma drugs: human and animal studies. Ophthalmol Internet. 1999 Mar 1 [cited 2023 Jan 3];106(3):556–563. doi: 10.1016/S0161-6420(99)90116-1
  • Noecker RJ, Herrygers LA, Anwaruddin R. Corneal and conjunctival changes caused by commonly used glaucoma medications. Cornea Internet. 2004 Jul [cited 2023 Jan 3];23(5):490–496. doi: 10.1097/01.ico.0000116526.57227.82
  • Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma Internet. 2008 Aug [cited 2023 Jan 3];17(5):350–355. doi: 10.1097/IJG.0b013e31815c5f4f
  • Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol Internet. 2012 [[cited 2023 Jan 3]]; 153(1):1–9.e2. doi: 10.1016/j.ajo.2011.05.033
  • Fechtner RD, Godfrey DG, Budenz D, et al. Prevalence of ocular surface complaints in patients with glaucoma using topical intraocular pressure-lowering medications. Cornea Internet. 2010 Jun [cited 2023 Jan 3];29(6):618–621. doi: 10.1097/ICO.0b013e3181c325b2
  • Zhou Y, Aref AA. A review of selective laser trabeculoplasty: recent findings and Current perspectives. Ophthalmol Ther Internet. 2017 Jun 1 [cited 2023 Jan 3]; 6(1):19–32. doi: 10.1007/s40123-017-0082-x
  • Achiron A, Sharif N, Achiron RN, et al. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol Internet. 2012 Oct 1 [cited 2023 Jan 3];23(2):625–585. https://pubmed.ncbi.nlm.nih.gov/22249233/
  • Samuelson TW, Chang DF, Marquis R, et al. A Schlemm canal microstent for intraocular pressure reduction in primary open-angle glaucoma and cataract: the HORIZON study. Ophthalmol Internet. 2019 Jan 1 [cited 2023 Jan 3];126(1):29–37. doi; 10.1016/j.ophtha.2018.05.012
  • Brubaker RF. Flow of aqueous humor in humans [the friedenwald lecture]. Invest Ophthalmol Vis Sci Internet. 1991 [cited 2023 Jan 3];32(13):3145–3166. https://pubmed.ncbi.nlm.nih.gov/1748546/
  • Johnson M. ‘What controls aqueous humour outflow resistance?’. Exp Eye Res Internet. 2006 Apr [[cited 2023 Jan 3]];82(4):545–557. https://pubmed.ncbi.nlm.nih.gov/16386733/
  • Brubaker RF, Nagataki S, Townsend DJ, et al. The effect of age on aqueous humor formation in man. Ophthalmol Internet. 1981 [cited 2023 Jan 3];88(3):283–288. doi; 10.1016/S0161-6420(81)35037-4
  • Vranka JA, Kelley MJ, Acott TS, et al. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res Internet. 2015 Apr 1 [cited 2023 Jan 3]; 133:112–125. doi: 10.1016/j.exer.2014.07.014
  • BILL A, SVEDBERGH B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm–an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol Internet. 1972 [cited 2023 Jan 3];50(3):295–320. doi: 10.1111/j.1755-3768.1972.tb05954.x
  • Johnson M, Johnson DH, Kamm RD, et al. The filtration characteristics of the aqueous outflow system. Exp Eye Res InternetExperimental Eye Research. 1990 [[cited 2023 Jan 3]]; 50(4):407–418. doi: 10.1016/0014-4835(90)90142-H
  • Keller KE, Bradley JM, Vranka JA. et al. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest Ophthalmol Vis Sci Internet. 2011 Jul [cited 2023 Jan 3]; 52(8); 5049–5057. doi: 10.1167/iovs.10-6948
  • Epstein DL, Rohen JW. Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye. Invest Ophthalmol Vis Sci Internet. 1991 [cited 2023 Jan 3];32(1):160–171. https://pubmed.ncbi.nlm.nih.gov/1987099/
  • Ethier CR, Read AT, Chan D. Biomechanics of Schlemm’s canal endothelial cells: influence on F-actin architecture. Biophys J Internet. 2004 [[cited 2023 Jan 3]]; 87(4):2828–2837. doi: 10.1529/biophysj.103.038133
  • Hann CR, Fautsch MP. Recent developments in understanding the Role of aqueous humor outflow in normal and primary open angle glaucoma. Curr Ophthalmol Rep. 2015 Jun 1[cited 2023 Jan 3];3(2): Internet:67–73. doi: 10.1007/s40135-015-0072-x
  • Lu Z, Overby DR, Scott PA. et al. The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes. Exp Eye Res Internet. 2008 Feb [cited 2023 Jan 3]; 86(2); 271–281. doi: 10.1016/j.exer.2007.10.018
  • Grant WM. Further studies on facility of flow through the trabecular meshwork. AMA Arch Ophthalmol. Arch Ophtalmol Internet. 1958 [cited 2023 Jan 3];60(4):523–533. doi: 10.1001/archopht.1958.00940080541001
  • Carreon T, van der Merwe E, Fellman RL, et al. Aqueous outflow - a continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res InternetProgress in Retinal and Eye Research. 2017 Mar 1 [cited 2023 Jan 3];57:108–133. doi: 10.1016/j.preteyeres.2016.12.004
  • Johnstone MA. The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma Internet. 2004 Oct [cited 2023 Jan 3];13(5):421–438. doi: 10.1097/01.ijg.0000131757.63542.24
  • Johnstone MA, Saheb H, Ahmed IIK, et al. Effects of a Schlemm canal scaffold on collector channel ostia in human anterior segments. Exp Eye Res Internet. 2014 [[cited 2023 Jan 3]];119:70–76. doi: 10.1016/j.exer.2013.12.011
  • Johnstone MA, Grant WM. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol Internet. 1973 [[cited 2023 Jan 3]]; 75(3):365–383. doi: 10.1016/0002-9394(73)91145-8
  • Battista SA, Lu Z, Hofmann S, et al. Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes. Invest Ophthalmol Vis Sci Internet. 2008 [cited 2023 Jan 3];49(12):5346–5352. doi: 10.1167/iovs.08-1707
  • Castleman LS, Motzkin SM, Alicandri FP, et al. Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res Internet. 1976 [cited 2023 Jan 3];10(5):695–731. doi: 10.1002/jbm.820100505
  • Henderson E, Nash DH, Dempster WM. On the experimental testing of fine nitinol wires for medical devices. J Mech Behav Biomed Mater Internet. 2011 Apr [cited 2023 Jan 3];4(3):261–268. doi: 10.1016/j.jmbbm.2010.10.004
  • Haider W, Munroe N, Pulletikurthi C. et al. A comparative biocompatibility analysis of ternary nitinol alloys. J Mater Eng Perform Internet. 2009 Aug [cited 2023 Jan 3]; 18(5–6); 760–764. doi: 10.1007/s11665-009-9435-5
  • Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Biomed Mater Eng Internet. 2002 [cited 2023 Jan 3];12(1):69–109. https://pubmed.ncbi.nlm.nih.gov/11847410/
  • Assad M, Chernyshov A, Leroux MA, et al. A new porous titanium-nickel alloy: part 1. Cytotoxicity and genotoxicity evaluation. Biomed Mater Eng Internet. 2002 [cited 2023 Jan 3];12(3):225–237. https://pubmed.ncbi.nlm.nih.gov/12446938/
  • Wever DJ, Veldhuizen AG, Sanders MM. et al. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials Internet. 1997 Aug [cited 2023 Jan 3]; 18(16); 1115–1120. doi: 10.1016/S0142-9612(97)00041-0
  • Ko GY, Song HY, Seo TS, et al. Obstruction of the lacrimal system: treatment with a covered, retrievable, expandable nitinol stent versus a lacrimal polyurethane stent. Radiology. 2003 Apr 1[cited 2023 Jan 3];227(1): 270–276. Internet. 10.1148/radiol.2271011674
  • Roosli C, Schmid P, Huber AM. Biocompatibility of nitinol stapes prosthesis. Otol Neurotol Internet. 2011 Feb [cited 2023 Jan 3];32(2):265–270. doi: 10.1097/MAO.0b013e318201622e
  • Balakrishnan N, Uvelius B, Zaszczurynski P, et al. Biocompatibility of nitinol and stainless steel in the bladder: an experimental study. J Urol Internet. 2005 [cited 2023 Jan 3];173(2):647–650. doi: 10.1097/01.ju.0000143197.93944.14
  • Kujala S, Pajala A, Kallioinen M, et al. Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon. Biomaterials Internet. 2004 [cited 2023 Jan 3];25(2):353–358. doi: 10.1016/S0142-9612(03)00488-5
  • Verheye S, de Meyer GRY, Salu K, et al. Histopathologic evaluation of a novel-design nitinol stent: the biflex stent. Int J Cardiovasc Intervent Internet. 2004 [cited 2023 Jan 3];6(1):13–19. doi: 10.1080/14628840410030342
  • Olson JL, Velez-Montoya R, Erlanger M. Ocular biocompatibility of nitinol intraocular clips. Invest Ophthalmol Vis Sci Internet. 2012 Jan [cited 2023 Jan 3];53(1):354–360. doi: 10.1167/iovs.11-8496
  • Katz LJ, Erb C, Carceller Guillamet A, et al. Long-term titrated IOP control with one, two, or three trabecular micro-bypass stents in open-angle glaucoma subjects on topical hypotensive medication: 42-month outcomes. Clin Ophthalmol Internet 2018 Jan 31[cited 2023 Jan 3];12:255–262. doi:10.2147/OPTH.S152268
  • Camras LJ, Yuan F, Fan S. et al. A novel Schlemm’s canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci Internet. 2012 Sep [cited 2023 Jan 3]; 53(10); 6115–6121. doi: 10.1167/iovs.12-9570
  • Johnson DH, Johnson M, Camras C. How does nonpenetrating glaucoma surgery work? Aqueous outflow resistance and glaucoma surgery. J Glaucoma Internet. 2001 [cited 2023 Jan 3];10(1):55–67. doi: 10.1097/00061198-200102000-00011
  • Hays CL, Gulati V, Fan S, et al. Improvement in outflow facility by two novel microinvasive glaucoma surgery implants. Invest Ophthalmol Vis Sci Internet. 2014 [cited 2023 Jan 3];55(3):1893–1900. doi: 10.1167/iovs.13-13353
  • Smit BA, Johnstone MA. Effects of viscoelastic injection into Schlemm’s canal in primate and human eyes: potential relevance to viscocanalostomy. Ophthalmol Internet. 2002 [[cited 2023 Jan 3]]; 109(4):786–792. doi: 10.1016/S0161-6420(01)01006-5
  • Grierson I, Saheb H, Kahook MY, et al. A novel Schlemm’s canal scaffold: histologic observations. J Glaucoma Internet. 2015 Aug 19 [cited 2023 Jan 3];24(6):460–468. doi: 10.1097/IJG.0000000000000012
  • Shabalovskaya S, Anderegg J, van Humbeeck J. Critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater Internet. 2008 [[cited 2023 Jan 3]]; 4(3):447–467. doi: 10.1016/j.actbio.2008.01.013
  • Shabalovskaya SA, Tian H, Anderegg JW, et al. The influence of surface oxides on the distribution and release of nickel from nitinol wires. Biomaterials Internet. 2009 Feb [[cited 2023 Jan 3]];30(4):468–477. https://pubmed.ncbi.nlm.nih.gov/18996586/
  • Gulati V, Fan S, Hays CL, et al. A novel 8-mm Schlemm’s canal scaffold reduces outflow resistance in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci Internet. 2013 [cited 2023 Jan 3];54(3):1698–1704. doi: 10.1167/iovs.12-11373
  • Yuan F, Schieber AT, Camras LJ, et al. Mathematical modeling of outflow facility increase with trabecular meshwork bypass and Schlemm canal dilation. J Glaucoma Internet. 2016 [cited 2023 Jan 3];25(4):355–364. doi: 10.1097/IJG.0000000000000248
  • Laroche D, Nkrumah G, Ng C. Real-world efficacy of the Hydrus microstent in black and afro-latino patients with glaucoma: a retrospective study. Ther Adv Ophthalmol. 2020 Oct 19;12:2515841420964311. doi: 10.1177/2515841420964311
  • Fea AM, Rekas M, Au L. Evaluation of a Schlemm canal scaffold microstent combined with phacoemulsification in routine clinical practice: two-year multicenter study. J Cataract Refract Surg Internet. 2017 Jul 1 [cited 2023 Jan 3]; 43(7):886–891. doi: 10.1016/j.jcrs.2017.04.039
  • Lavia C, Dallorto L, Maule M, et al. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: a systematic review and meta-analysis. PLoS One Internet. 2017 Aug 1 [cited 2023 Jan 3]; 12(8):e0183142. doi: 10.1371/journal.pone.0183142
  • Ahuja Y, Ma Khin Pyi S, Malihi M, et al. Clinical results of ab interno trabeculotomy using the trabectome for open-angle glaucoma: the mayo clinic series in Rochester, Minnesota. Am J Ophthalmol Internet. 2013 [cited 2023 Jan 3];156(5):927–935.e2. doi: 10.1016/j.ajo.2013.06.001
  • Ferguson TJ, Berdahl JP, Schweitzer JA, et al. Evaluation of a trabecular micro-bypass stent in pseudophakic patients with open-angle glaucoma. J Glaucoma Internet. 2016 Nov 1 [cited 2023 Jan 3];25(11):896–900. doi: 10.1097/IJG.0000000000000529
  • Wong MOM, Lee JWY, Choy BNK, et al. Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol Internet. 2015 Jan 1 [cited 2023 Jan 3];60(1):36–50. doi: 10.1016/j.survophthal.2014.06.006
  • Lee GA, Porter AJ, Vincent RA, et al. Combined phacoemulsification and microinvasive glaucoma surgery in comparison to phacoemulsification alone for open angle glaucoma. Eye (Lond) Internet. 2020 Feb 1 [cited 2023 Jan 3];34(2):312–318. doi: 10.1038/s41433-019-0459-2
  • Gandolfi SA, Ungaro N, Ghirardini S, et al. Comparison of surgical outcomes between Canaloplasty and Schlemm’s canal scaffold at 24 months’ follow-up. J Ophthalmol Internet. 2016 [cited 2023 Jan 3];2016:1–5. doi: 10.1155/2016/3410469
  • Fea AM, Ahmed IIK, Lavia C, et al. Hydrus microstent compared to selective laser trabeculoplasty in primary open angle glaucoma: one year results. Clin Exp Ophthalmol Internet. 2017 Mar 1 [cited 2023 Jan 3];45(2):120–127. doi; 10.1111/ceo.12805
  • Al-Mugheiry TS, Cate H, Clark A, et al. Microinvasive glaucoma stent (MIGS) surgery with concomitant phakoemulsification cataract extraction: outcomes and the learning curve. J Glaucoma Internet. 2017 [cited 2023 Jan 3];26(7):646–651. doi: 10.1097/IJG.0000000000000691
  • Pfeiffer N, Garcia-Feijoo J, Martinez-De-La-Casa JM, et al. A randomized trial of a Schlemm’s canal microstent with phacoemulsification for reducing intraocular pressure in open-angle glaucoma. Ophthalmol [Internet]. 2015 Jul 1 [cited 2023 Jan 3];122 7:1283–1293. doi: 10.1016/j.ophtha.2015.03.031
  • Montesano G, Ometto G, Ahmed IIK, et al. Am J five-year visual field outcomes of the HORIZON trial. Ophthalmol. 2023 Jul;251:143–155. Epub 2023 Feb 21.PMID: 36813144 Free article. Clinical Trial. doi: 10.1016/j.ajo.2023.02.008
  • Zebardast N, Zheng C, Jampel HD. Effect of a Schlemm’s canal microstent on early postoperative intraocular pressure after cataract surgery: an analysis of the HORIZON randomized controlled trial. Ophthalmol Internet. 2020 Oct 1 [cited 2023 Jan 3]; 127(10):1303–1310. doi: 10.1016/j.ophtha.2020.01.025
  • Ahmed IIK, Fea A, Au L, et al. A prospective randomized trial comparing Hydrus and iStent microinvasive glaucoma surgery implants for standalone treatment of open-angle glaucoma: the COMPARE study. Ophthalmol Internet. 2020 Jan 1 [cited 2023 Jan 3];127(1):52–61. doi; 10.1016/j.ophtha.2019.04.034
  • Holmes DP, Clement CI, Nguyen V, et al. Comparative study of 2-year outcomes for Hydrus or iStent inject microinvasive glaucoma surgery implants with cataract surgery. Clin Exp Ophthalmol Internet. 2022 Apr 1 [cited 2023 Jan 3];50(3):303–311. doi: 10.1111/ceo.14048
  • Hu R, Guo D, Hong N, et al. Comparison of Hydrus and iStent microinvasive glaucoma surgery implants in combination with phacoemulsification for treatment of open-angle glaucoma: systematic review and network meta-analysis. BMJ Open Internet. 2022 Jun 15 [cited 2023 Jan 3];12(6):e051496. doi: 10.1136/bmjopen-2021-051496
  • Fea AM, Consolandi G, Pignata G, et al. A comparison of endothelial cell loss in combined cataract and MIGS (Hydrus) procedure to phacoemulsification alone: 6-month results. J Ophthalmol Internet. 2015 [cited 2023 Jan 3];2015:1–5. doi: 10.1155/2015/769289
  • Laroche D, Martin A, Brown A, et al. Mispositioned Hydrus microstents: a case series imaged with NIDEK GS-1 gonioscope. J Ophthalmol. 2022 Sep 8;2022:1605195. doi: 10.1155/2022/1605195
  • Atik A, Rhodes LA, Samuels BC, et al. Cost utility of Schlemm’s canal microstent injection with cataract surgery for open-angle glaucoma in the US Medicare system. J Glaucoma. 2022 Jun 1;31(6):413–422. doi: 10.1097/IJG.0000000000001993
  • Ocuda M, Sotaro M, Fumio T, et al. Association of the prolonged use of antiglaucoma medications with the surgical failure of ab interno microhook trabeculotomy. Acta Ophthalmol. 2022;100(6):e1209–e1215. https://pubmed.ncbi.nlm.nih.gov/35080795/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.