1,579
Views
185
CrossRef citations to date
0
Altmetric
Review Article

Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy

, , , &
Pages 1021-1040 | Received 20 Sep 2015, Accepted 29 Apr 2016, Published online: 20 Jun 2016

References

  • Ahamed M, Alsalhi MS, Siddiqui MK. 2010a. Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–8.
  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. 2010b. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–9.
  • Ahn JM, Eom HJ, Yang X, Meyer JN, Choi J. 2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–52.
  • Akutsu M, Dikic I, Bremm A. 2016. Ubiquitin chain diversity at a glance. J Cell Sci 183954. jcs.
  • Amcoff P, Griesinger C, Halder M, Busquet F. 2014. EURL ECVAM Recommendation on the zebrafish embryo acute toxicity test method (ZFET) for acute aquatic toxicity testing (2014). Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/32164/1/eur 26710_eurl ecvam zfet recommendation__online.pdf.
  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. 2013. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186.
  • Arora S, Jain J, Rajwade JM, Paknikar KM. 2008. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93–100.
  • Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. 2012. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:2.
  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102.
  • Bánfalvi GSR. 2011. Cellular Effects of Heavy Metals. Dordrecht, NY: Springer.
  • Banreti A, Sass M, Graba Y. 2013. The emerging role of acetylation in the regulation of autophagy. Autophagy 9:819–29.
  • Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M, Branca F, et al 2000. Biomarkers as predictive tools in toxicity testing. Altern Lab Anim 28:119–31.
  • Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. 2013. The possible ‘proton sponge’ effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 21:149–57.
  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–14.
  • Bowden LP, Royer MC, Hallman JR, Lewin-Smith M, Lupton GP. 2011. Rapid onset of argyria induced by a silver-containing dietary supplement. J Cutan Pathol 38:832–5.
  • Cao SS, Kaufman RJ. 2014. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413.
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–19.
  • Castiglioni S, Caspani C, Cazzaniga A, Maier JA. 2014. Short-and long-term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem 5:457–64.
  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, et al. 2007. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–5.
  • Chan SN, Tang BL. 2013. Location and membrane sources for autophagosome formation – from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol Membr Biol 30:394–402.
  • Chatterjee N, Eom HJ, Choi J. 2014. Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–33.
  • Chen X, Schluesener HJ. 2008. Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12.
  • Chen Y, Klionsky DJ. 2011. The regulation of autophagy – unanswered questions. J Cell Sci 124:161–70.
  • Cheng LC, Jiang X, Wang J, Chen C, Liu RS. 2013. Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 5:3547–69.
  • Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. 2015. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7:736–46.
  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–9.
  • Christen V, Capelle M, Fent K. 2013. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicol Appl Pharmacol 272:519–28.
  • Comfort KK, Braydich-Stolle LK, Maurer EI, Hussain SM. 2014. Less is more: long-term in vitro exposure to low levels of silver nanoparticles provides new insights for nanomaterial evaluation. ACS Nano 8:3260–71.
  • Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL. 2014. Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem 33:2716–23.
  • Costa CS, Ronconi JV, Daufenbach JF, Goncalves CL, Rezin GT, Streck EL, Paula MM. 2010. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342:51–6.
  • Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J. 2015. Autophagy in DNA damage response. Int J Mol Sci 16:2641–62.
  • De Jong WH, van der Ven LT, Sleijffers A, Park MV, Jansen EH, van Loveren H, Vandebriel RJ. 2013. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 34:8333–43.
  • Demir E, Vales G, Kaya B, Creus A, Marcos R. 2011. Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–24.
  • Devi GP, Ahmed KB, Varsha MK, Shrijha BS, Lal KK, Anbazhagan V, Thiagarajan R. 2015. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–56.
  • Ding F, Radic S, Chen R, Chen P, Geitner NK, Brown JM, Ke PC. 2013. Direct observation of a single nanoparticle–ubiquitin corona formation. Nanoscale 5:9162–9.
  • Ding L, Liu Z, Aggrey MO, Li C, Chen J, Tong L. 2015. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles. Mini Rev Med Chem 15:529–42.
  • Donohue TM Jr. 2002. The ubiquitin–proteasome system and its role in ethanol-induced disorders. Addict Biol 7:15–28.
  • Drake PL, Hazelwood KJ. 2005. Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–85.
  • Duran N, Silveira CP, Duran M, Martinez DS. 2015. Silver nanoparticle protein corona and toxicity: a mini-review. J Nanobiotechnol 13:55.
  • Farah MA, Ali MA, Chen SM, Li Y, Al-Hemaid FM, Abou-Tarboush FM, et al. 2016. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B Biointerfaces 141:158–69.
  • Feng Y, He D, Yao Z, Klionsky DJ. 2014. The machinery of macroautophagy. Cell Res 24:24–41.
  • Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, et al. 2001. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010.
  • Geng J, Klionsky DJ. 2008. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects' review series. EMBO Rep 9:859–64.
  • Glick D, Barth S, Macleod KF. 2010. Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12.
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11.
  • Groth-Pedersen L, Jaattela M, Nylandsted J. 2015. A method to monitor lysosomal membrane permeabilization by immunocytochemistry. Cold Spring Harb Protoc 2015:904–7.
  • Guarnieri D, Sabella S, Muscetti O, Belli V, Malvindi MA, Fusco S, et al. 2014. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale 6:10264–73.
  • Guo P, Wang X. 2010. Rab GTPases act in sequential steps to regulate phagolysosome formation. Small GTPases 1:170–3.
  • Hadrup N, Lam HR, Loeschner K, Mortensen A, Larsen EH, Frandsen H. 2012. Nanoparticulate silver increases uric acid and allantoin excretion in rats, as identified by metabolomics. J Appl Toxicol 32:929–33.
  • He C, Klionsky DJ. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93.
  • Hong JS, Kim S, Lee SH, Jo E, Lee B, Yoon J, et al. 2014. Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicology 8:349–62.
  • Hoozemans JJ, Scheper W. 2012. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol 44:1295–8.
  • Huang JG, Leshuk T, Gu FX. 2011. Emerging nanomaterials for targeting subcellular organelles. Nano Today 6:478–92.
  • Hunt PR, Marquis BJ, Tyner KM, Conklin S, Olejnik N, Nelson BC, Sprando RL. 2013. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol 33:1131–42.
  • Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, et al. 2015. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: the role in toxicity evaluation. Biomaterials 61:307–15.
  • Ilyechova EY, Saveliev AN, Skvortsov AN, Babich PS, Zatulovskaia YA, Pliss MG, et al. 2014. The effects of silver ions on copper metabolism in rats. Metallomics 6:1970–87.
  • Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–69.
  • Jacomin AC, Bescond A, Soleilhac E, Gallet B, Schoehn G, Fauvarque MO, Taillebourg E. 2015. The deubiquitinating enzyme UBPY is required for lysosomal biogenesis and productive autophagy in Drosophila. PLoS One 10:e0143078.
  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. 2009. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–401.
  • Jiang P, Mizushima N. 2014. Autophagy and human diseases. Cell Res 24:69–79.
  • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N. 2014. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25:1327–37.
  • Jiao ZH, Li M, Feng YX, Shi JC, Zhang J, Shao B. 2014. Hormesis effects of silver nanoparticles at non-cytotoxic doses to human hepatoma cells. PLoS One 9:e102564
  • Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, et al. 2010. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–58.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–46.
  • Jung M, Lee J, Seo HY, Lim JS, Kim EK. 2015. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS One 10:e0116972
  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–8.
  • Kain J, Karlsson HL, Moller L. 2012. DNA damage induced by micro-and nanoparticles-interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 27:491–500.
  • Kang K, Jung H, Lim JS. 2012. Cell death by polyvinylpyrrolidine-coated silver nanoparticles is mediated by ROS-dependent signaling. Biomol Ther (Seoul) 20:399–405.
  • Karthikeyan B, Arun A, Harini L, Sundar K, Kathiresan T. 2015. Role of ZnS nanoparticles on endoplasmic reticulum stress-mediated apoptosis in retinal pigment epithelial cells. Biol Trace Elem Res 170:390–400.
  • Kasper J, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, et al. 2011. Inflammatory and cytotoxic responses of an alveolar–capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol 8:6.
  • Katuli KK, Massarsky A, Hadadi A, Pourmehran Z. 2014. Silver nanoparticles inhibit the gill Na(+)/K(+)-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicol Environ Saf 106: 173–80.
  • Key SCS, Reaves D, Turner F, Bang JJ. 2011. Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas J Biol 1:52–61.
  • Kim HR Kim MJ, Lee SY, Oh SM, Chung KH. 2011. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 726:129–35.
  • Lim JY, Ozato K. 2009. The sequestosome 1/p62 attenuates cytokine gene expression in activated macrophages by inhibiting IFN regulatory factor 8 and TNF receptor-associated factor 6/NF-kappaB activity. J Immunol 182:2131–40.
  • Kim Y, Suh HS, Cha HJ, Kim SH, Jeong KS, Kim DH. 2009. A case of generalized argyria after ingestion of colloidal silver solution. Am J Ind Med 52:246–50.
  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–23.
  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–63.
  • Kraft C, Peter M, Hofmann K. 2010. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12:836–41.
  • Kroemer G, Jaattela M. 2005. Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–97.
  • Lee TY, Liu MS, Huang LJ, Lue SI, Lin LC, Kwan AL, Yang RC. 2013. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol 10:40.
  • Lee YH, Cheng FY, Chiu HW, Tsai JC, Fang CY, Chen CW, Wang YJ. 2014. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35:4706–15.
  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. 2013. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–44.
  • Li M, Koshi T, Emr SD. 2015. Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins. J Cell Biol 211:639–52.
  • Lim J, Lee Y, Kim HW, Rhyu IJ, Oh MS, Youdim MB, et al. 2012. Nigericin-induced impairment of autophagic flux in neuronal cells is inhibited by overexpression of Bak. J Biol Chem 287:23271–82.
  • Lin J, Huang Z, Wu H, Zhou W, Jin P, Wei P, et al. 2014. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10:2006–20.
  • Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT. 2013. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 51:283–96.
  • Linkov I, Steevens J, Adlakha-Hutcheon G, Bennett E, Chappell M, Colvin V, et al. 2009. Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop. J Nanopart Res 11:513–27.
  • Lippai M, Low P. 2014. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int 2014:832704.
  • Liu P, Huang Z, Gu N. 2013. Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf 87:124–30.
  • Liu P, Sun Y, Wang Q, Sun Y, Li H, Duan Y. 2014. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials 35:760–70.
  • Liu Z, Lv Y, Zhao N, Guan G, Wang J. 2015. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis 6:e1822
  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. 2011. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18.
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–70.
  • Luo K, Cao SS. 2015. Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract 2015:328791.
  • Lynch I, Ahluwalia A, Boraschi D, Byrne HJ, Fadeel B, Gehr P, et al. 2013. The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design. BioNanoMaterials 14:195–216.
  • Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, et al. 2011. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–39.
  • Magdolenova z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–78.
  • Majumder P, Chakrabarti O. 2015. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis 6:e1970.
  • Mangini V, Dell'Aglio M, De Stradis A, De Giacomo A, De Pascale O, Natile G, Arnesano F. 2014. Amyloid transition of ubiquitin on silver nanoparticles produced by pulsed laser ablation in liquid as a function of stabilizer and single-point mutations. Chemistry 20:10745–51.
  • Mari M, Tooze SA, Reggiori F. 2011. The puzzling origin of the autophagosomal membrane. F1000 Biol Rep 3:25.
  • Mcbride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. 2003. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 22:5755–73.
  • Mcewan DG, Dikic I. 2011. The three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol 21:195–201.
  • Melaiye A, Youngs WJ. 2005. Silver and its application as an antimicrobial agent. Expert Opin Ther Patents 15:125–30.
  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, et al. 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–50.
  • Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, et al. 2014. Exposure to silver nanoparticles induces size-and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28:1280–9.
  • Mishra A, Zheng J, Tang X, Goering PL. 2016. Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent. Toxicol Sci 150:473–487.
  • Nakashima S, Hiraku Y, Tada-Oikawa S, Hishita T, Gabazza EC, Tamaki S, et al. 2003. Vacuolar H+-ATPase inhibitor induces apoptosis via lysosomal dysfunction in the human gastric cancer cell line MKN-1. J Biochem 134:359–64.
  • Neal AL. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–71.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7.
  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–57.
  • Noel C, Simard JC, Girard D. 2015. Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol In Vitro 31:12–22.
  • Noguchi M, Hirata N, Suizu F. 2014. The links between AKT and two intracellular proteolytic cascades: ubiquitination and autophagy. Biochim Biophys Acta 1846:342–52.
  • Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, et al. 2004. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–35.
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. GROUP, IRFRSINTSW. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Oh N, Park JH. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J *Nanomedicine 9:51–63.
  • Ong C, Yung LY, Cai Y, Bay BH, Baeg GH. 2014. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:1–8.
  • Onodera A, Nishiumi F, Kakiguchi K, Tanaka A, Tanabe N, Honma A, et al. 2015. Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol Rep 2:574–9.
  • Panacek A, Rucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, et al. 2011. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–9.
  • Pandey UB, Nichols CD. 2011. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–36.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, et al. 2010a. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–8.
  • Park EJ, Choi DH, Kim Y, Lee EW, Song J, Cho MH, et al. 2014. Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol In Vitro 28:1402–12.
  • Park EJ, Yi J, Kim Y, Choi K, Park K. 2010b. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–8.
  • Park J, Lim DH, Lim HJ, Kwon T, Choi JS, Jeong S, et al. 2011. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun (Camb) 47:4382–4.
  • Rikiishi H. 2012. Novel insights into the interplay between apoptosis and autophagy. Int J Cell Biol 2012:317645.
  • Ringwood AH, Mccarthy M, Bates TC, Carroll DL. 2010. The effects of silver nanoparticles on oyster embryos. Mar Environ Res 69:S49–51.
  • Rubinstein AD, Kimchi A. 2012. Life in the balance – a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125:5259–68.
  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, et al. 2014. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–61.
  • Schreiber A, Peter M. 2014. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim Biophys Acta 1843:163–81.
  • Schultz ML, Tecedor L, Chang M, Davidson BL. 2011. Clarifying lysosomal storage diseases. Trends Neurosci 34:401–10.
  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33.
  • Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, et al. 2008. A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–29.
  • Setyawati MI, Yuan X, Xie J, Leong DT. 2014. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials 35:6707–15.
  • Shaid S, Brandts CH, Serve H, Dikic I. 2013. Ubiquitination and selective autophagy. Cell Death Differ 20:21–30.
  • Shang L, Nienhaus K, Nienhaus GU. 2014. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5.
  • Sharma HS, Muresanu DF, Lafuente JV, Sjoquist PO, Patnaik R, Sharma A. 2015. Nanoparticles exacerbate both ubiquitin and heat shock protein expressions in spinal cord injury: neuroprotective effects of the proteasome inhibitor carfilzomib and the antioxidant compound H-290/51. Mol Neurobiol 52:882–98.
  • Shen HM, Codogno P. 2012. Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 318:1304–8.
  • Simard JC, Vallieres F, De Liz R, Lavastre V, Girard D. 2015. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 290:5926–39.
  • Skalska J, Frontczak-Baniewicz M, Struzynska L. 2014. Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology 46:145–154.
  • Solinger JA, Spang A. 2013. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 280:2743–57.
  • Sondhi KC, Turoczi LJ. 1966. The effects of erythorbic Acid treatments on melanin synthesis and on the adult life span in Drosophila melanogaster: preliminary report. Proc Natl Acad Sci USA 56:1743–5.
  • Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20.
  • Stolz A, Ernst A, Dikic I. 2014. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501.
  • Sund J, Palomaki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. 2014. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteomics 108:469–83.
  • Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, et al. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 201:531–9.
  • Tamas MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P. 2014. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–67.
  • Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, et al. 2008. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17:431–9.
  • Teodoro JS, Simoes AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM. 2011. Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro 25:664–70.
  • Tian H, Eom HJ, Moon S, Lee J, Choi J, Chung YD. 2013. Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in Drosophila. Environ Toxicol Pharmacol 36:548–56.
  • Tiwari DK, Jin T, Behari J. 2011. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21:13–24.
  • Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, et al. 2013. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–14.
  • van der Zande M, Vandebriel RJ Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. 2012. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–42.
  • Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, Kjeldsen F. 2014. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8:2161–75.
  • Verhelst K, Carpentier I, Beyaert R. 2011. Regulation of TNF-induced NF-kappaB activation by different cytoplasmic ubiquitination events. Cytokine Growth Factor Rev 22:277–86.
  • Wang WA, Groenendyk J, Michalak M. 2014. Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta 1843:2143–9.
  • Wang Y, Kaur G, Zysk A, Liapis V, Hay S, Santos A, et al. 2015. Systematic in vitro nanotoxicity study on anodic alumina nanotubes with engineered aspect ratio: understanding nanotoxicity by a nanomaterial model. Biomaterials 46:117–30.
  • Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S. 2014. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague–Dawley rats. Nanotoxicology 9:1–11.
  • Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, et al. 2008. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem 283:6783–9.
  • Wu H, Lin J, Liu P, Huang Z, Zhao P, Jin H, et al. 2015. Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma. Biomaterials 62:47–57.
  • Xiao H, Chen D, Fang Z, Xu J, Sun X, Song S, et al. 2009. Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans. Mol Biol Cell 20:21–32.
  • Xin Q, Rotchell JM, Cheng J, Yi J, Zhang Q. 2015. Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35:1481–92.
  • Xu F, Piett C, Farkas S, Qazzaz M, Syed NI. 2013. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 6:29.
  • Xu H, Ren D. 2015. Lysosomal physiology. Annu Rev Physiol 77:57–80.
  • Xu Y, Wang L, Bai R, Zhang T, Chen C. 2015. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 7:16100–9.
  • Xue Y, Zhang S, Huang Y, Zhang T, Liu X, Hu Y, et al. 2012. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 32:890–9.
  • Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, et al. 2012. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198:219–33.
  • Yang EJ, Kim S, Kim JS, Choi IH. 2012. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33:6858–67.
  • Yokota S, Himeno M, Roth J, Brada D, Kato K. 1993. Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)phthalate treatment. II. Immunocytochemical analysis of early and late autophagosomes. Eur J Cell Biol 62:372–83.
  • Yu KN, Sung JH, Lee S, Kim JE, Kim S, Cho WY, et al. 2015. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol 85:106–13.
  • Yu WJ, Son JM, Lee J, Kim SH, Lee IC, Baek HS, et al. 2014. Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats. Nanotoxicology 8:85–91.
  • Zabirnyk O, Yezhelyev M, Seleverstov O. 2007. Nanoparticles as a novel class of autophagy activators. Autophagy 3:278–81.
  • Zhang R, Piao MJ, Kim KC, Kim AD, Choi JY, Choi J, Hyun JW. 2012a. Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol 44:224–32.
  • Zhang T, Wang L, Chen Q, Chen C. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med J 55:283–91.
  • Zhang XJ, Chen S, Huang KX, Le WD. 2013. Why should autophagic flux be assessed? Acta Pharmacol Sin 34:595–9.
  • Zhang Y, Morgan MJ, Chen K, Choksi S, Liu ZG. 2012b. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119:2895–905.
  • Zhao CM, Wang WX. 2012. Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46:11345–51.
  • Zhao X, Ibuki Y. 2015. Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light. Environ Sci Technol 49:5003–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.