326
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison

, , , , , & show all
Pages 1188-1202 | Received 21 Oct 2015, Accepted 29 Apr 2016, Published online: 29 Jul 2016

References

  • Andón FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, et al. 2013. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small 9:2721–9
  • Arutyunyan NR, Baklashev DV, Obraztsova ED. 2010. Suspensions of single-wall carbon nanotubes stabilized by pluronic for biomedical applications. Eur Phys J B 75:163–6
  • Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. 2010. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–9
  • Bhattacharya K, Andón FT, El-Sayed R, Fadeel B. 2013. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev 65:2087–97
  • Bussy C, Methven L, Kostarelos K. 2013. Hemotoxicity of carbon nanotubes. Adv Drug Deliv Rev 65:2127–34
  • Campagnolo L, Massimiani M, Magrini A, Camaioni A, Pietroiusti A. 2012. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials. Curr Med Chem 19:4488–94
  • Campagnolo L, Massimiani M, Palmieri G, Bernardini R, Sacchetti C, Bergamaschi A, et al. 2013. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol 10:21
  • Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, et al. 2010. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6:670–8
  • Dobrovolskaia MA, McNeil SE. 2007. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–78
  • Dong PX, Wan B, Guo LH. 2012. In vitro toxicity of acid-functionalized single-walled carbon nanotubes: effects on murine macrophages and gene expression profiling. Nanotoxicology 6:288–303
  • Duquette P, Pleines J, Girard M, Charest L, Senecal-Quevillon M, Masse C. 1992. The increased susceptibility of women to multiple sclerosis. Can J Neurol Sci 19:466–71
  • El-Sayed YS, Shimizu R, Onoda A, Takeda K, Umezawa M. 2015. Carbon black nanoparticle exposure during middle and late fetal development induces immune activation in male offspring mice. Toxicology 327:53–61
  • Ema M, Hougaard KS, Kishimoto A, Honda K. 2015. Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10:391–412
  • Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J. 2010. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–52
  • Ema M, Naya M, Horimoto M, Kato H. 2013. Developmental toxicity of diesel exhaust: a review of studies in experimental animals. Reprod Toxicol 42:1–17
  • Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, Kobzik L. 2008. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am. J. Respir. Cell Mol. Biol38:57–67
  • Geller AM, Kotb MY, Jernigan HM Jr., Kredich NM. 1986. Purification and properties of rat lens methionine adenosyltransferase. Exp Eye Res 43:997–1008
  • Hallaj-Nezhadi S, Lotfipour F, Dass C. 2010. Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci 13:472–85
  • Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, et al. 2015. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 56:118–40
  • Hougaard KS, Jackson P, Kyjovska ZO, Birkedal RK, De Temmerman PJ, Brunelli A, et al. 2013. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod Toxicol 41:86–97
  • Jackson P, Hougaard KS, Vogel U, Wu D, Casavant L, Williams A, et al. 2012. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat Res 745:73–83
  • Jakubek LM, Marangoudakis S, Raingo J, Liu X, Lipscombe D, Hurt RH. 2009. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials 30:6351–7
  • Jiménez-Periáñez A, Abos Gracia B, López Relaño J, Diez-Rivero CM, Reche PA, Martínez-Naves E, et al. 2013. Mesoporous silicon microparticles enhance MHC class I cross-antigen presentation by human dendritic cells. Clin Dev Immunol 2013:362163
  • Kagan VE, Kapralov AA, St Croix CM, Watkins SC, Kisin ER, Kotchey GP, et al. 2014. Lung macrophages “ynitrite oxidative pathway” carbon nanotubes using a superoxide/peroxynitrite oxidative. ACS Nano 8:5610–21
  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkow Y, et al. 2010. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–9
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, et al. 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100
  • Kamarthapu V, Rao KV, Srinivas PN, Reddy GB, Reddy VD. 2008. Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochim Biophys Acta 1784:1949–58
  • Kastrisianaki-Guyton ES, Chen L, Rogers SE, Cosgrove T, Duijneveldt JS. 2015. Adsorption of F127 onto single-walled carbon nanotubes characterized using small-angle neutron scattering. Langmuir 31:3262–8
  • Koike E, Takano H, Inoue KI, Yanagisawa R, Sakurai M, Aoyagi H, et al. 2008. Pulmonary exposure to carbon black nanoparticles increases the number of antigen-presenting cells in murine lung. Int J Immunopathol Pharmacol 21:35–42
  • Kulvietis V, Zalgeviciene V, Didziapetriene J, Rotomskis R. 2011. Transport of nanoparticles through the placental barrier. Tohoku J Exp Med 225:225–34
  • Kumar M, Ando Y. 2010. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–58
  • Lu SC, Alvarexz L, Huang ZZ, Chen L, An W, Corrales FJ, et al. 2001. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA 98:5560–5
  • Marques MRC, Loebenberg R, Almukainzi M. 2011. Simulated biological fluids with possible application in dissolution testing. Dissolut Technol 8:15–28
  • Markham GD, Pajares MA. 2009. Structure-function relationships in methionine adenosyltransferases. Cell Mol Life Sci 66:636–48
  • MacKenzie KJ, Dunens OM, Harris AT. 2010. An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind Eng Chem Res 49:5323–38
  • McQueney MS, Markham GD. 1995. Investigation of monovalent cation activation of S-adenosylmethionine synthetase using mutagenesis and uranyl inhibition. J Biol Chem 270:18277–84
  • Nativ-Roth E, Shvartzman-Cohen R, Bounioux C, Florent M, Zhang D, Szleifer I, Yerushalmi-Rozen R. 2007. Physical adsorption of block copolymers to SWNT and MWNT: a nonwrapping mechanism. Macromolecules 40:3676–85
  • Park EJ, Hong YS, Lee BS, Yoon C, Jeong U, Kim Y. 2016. Single-walled carbon nanotubes altered pulmonary immune homeostasis with metabolic disturbance on 13-weeks after a single intratracheal instillation. Environ Res 148:184–95
  • Park EJ, Zahari NE, Kang MS, Lee S, Lee K, Lee BS, et al. 2014. Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells. Toxicol Lett 229:167–77
  • Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, et al. 2011. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol 85:1121–31
  • Pauluhn J. 2010. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–42
  • Philbrook NA, Walker VK, Afrooz AR, Saleh NB, Winn LM. 2011. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod Toxicol 32:442–8
  • Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, et al. 2011. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 5:4624–33
  • Rösner B, Guldi DM, Chen J, Minett AI, Fink RH. 2014. Dispersion and characterization of arc discharge single-walled carbon nanotubes-towards conducting transparent films. Nanoscale 6:3695–703
  • Schädlich A, Hoffmann S, Mueller T, Caysa H, Rose C, Göpferich A, et al. 2012. Accumulation of nanocarriers in the ovary: a neglected toxicity risk? J Control Release 160:105–12
  • Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K. 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part FibreToxicol 6:20
  • Shimizu R, Umezawa M, Okamoto S, Onoda A, Uchiyama M, Tachibana K, et al. 2014. Effect of maternal exposure to carbon black nanoparticle during early gestation on the splenic phenotype of neonatal mouse. J Toxicol Sci 39:571–8
  • Shurin MR, Yanamala N, Kisin ER, Tkach AV, Shurin GV, Murray AR, et al. 2014. Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma. ACS Nano 8:5585–99
  • Shvartzman-Cohen R, Nativ-Roth E, Baskaran E, Levi-Kalisman Y, Szleifer I, Yerushalmi-Rozen R. 2004. Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J Am Chem Soc 126:14850–7
  • Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, et al. 2012. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One 7:e30923
  • Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, et al. 2014a. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol 306:L170–82
  • Shvedova AA, Kisin ER, Murray AR, Mouithys-Mickalad A, Stadler K, Mason RP, Kadiiska M. 2014b. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radic Biol Med 73:154–65
  • Stefanello FM, Scherer EB, Kurek AG, Mattos CB, Wyse AT. 2007. Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+), K (+)-ATPase activity in hippocampus of rats. Metab Brain Dis 22:172–82
  • Tkach AV, Yanamala N, Stanley S, Shurin MR, Shurin GV, Kisin ER, et al. 2013. Graphene oxide, but not fullerenes, targets immunoproteasomes and suppresses antigen presentation by dendritic cells. Small 9:1686–90
  • Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, et al. 2011. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5:5755–62
  • Turabekova M, Rasulev B, Theodore M, Jackman J, Leszczynska D, Leszczynski J. 2014. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale 6:3488–95
  • Villa CH, Dao T, Aheam I, Fehrenbacher N, Casey E, Rey DA, et al. 2011. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5:5300–11
  • Voskuhl R. 2011. Sex differences in autoimmune diseases. Biol Sex Differ 2:1
  • Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, et al. 2006. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–6
  • Zhang J, Boghossian AA, Barone PW, Rwei A, Kim J, Lin D, et al. 2011. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J Am Chem Soc 133:567–81
  • Zhu M, Tian X, Song X, Li Y, Tian Y, Zhao Y, Nie G. 2012. Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small 8:2841–8
  • Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. 2010. Nanoparticles and the immune system. Endocrinology 151:458–65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.