465
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC)

&
Pages 1526-1534 | Received 12 May 2016, Accepted 19 Sep 2016, Published online: 21 Oct 2016

References

  • Adams NWH, Kramer JR. 1999. Potentiometric determination of silver thiolate formation constants using a Ag2S electrode. Aquat Geochemistry 5:1–11
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2008. Membrane transport of small molecules and the electrical properties of membranes. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, eds. Molcular Biology of the Cell. New York: Taylor & Francis, 651–94
  • Auffan M, Matson CW, Rose J, Arnold M, Proux O, Fayard B, et al. 2014. Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos. Nanotoxicology 8:167–76
  • Bertinato J, Cheung L, Hoque R, Plouffe LJ. 2010. Ctr1 transports silver into mammalian cells. J Trace Elem Med Biol 24:178–84
  • Bury NR, Hogstrand C. 2002. Influence of chloride and metals on silver bioavailability to Atlantic salmon (Salmo salar) and Rainbow trout (Oncorhynchus mykiss) yolk-sac fry. Environ Sci Technol 36:2884–8
  • Cupi D, Hartmann NB, Baun A. 2015. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environ Toxicol Chem 34:497–506
  • Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J. 1998. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci 95:13641–5
  • Evans DH. 1987. The Fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58
  • Freshney RI. (2010). Culture of Animal Cells: a manual of Basic Technique and Specialized Applications. Hoboken, NJ: John Wiley & Sons, Inc
  • Gaiser BK, Fernandes TF, Jepson M. a, Lead JR, Tyler CR, Baalousha M, et al. 2012. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144–54
  • Geppert M, Hohnholt MC, Thiel K, Nürnberger S, Grunwald I, Rezwan K, Dringen R. 2011. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101
  • Geppert M, Sigg L, Schirmer K. 2016. A novel two-compartment barrier model for investigating nanoparticle transport in fish intestinal epithelial cells. Environ Sci Nano 3:388–95
  • Groh KJ, Dalkvist T, Piccapietra F, Behra R, Suter MJF, Schirmer K. 2014. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology 5390:1–11
  • Handy RD, Musonda MM, Phillips C, Falla SJ. 2000. Mechanisms of gastrointestinal copper absorption in the African walking catfish: copper dose-effects and a novel anion-dependent pathway in the intestine. J Exp Biol 203:2365–77
  • Hogstrand C, Galvez F, Wood CM. 1996. Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Enviromental Toxicol Chem 15:1102–8
  • Hogstrand C, Reid S, Wood C. 1995. Ca2+ versus Zn2+ transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn2+. J Exp Biol 198:337–48
  • Hogstrand C, Wood CM, Bury NR, Wilson RW, Rankin JC, Grosell M. 2002. Binding and movement of silver in the intestinal epithelium of a marine teleost fish, the European flounder (Platichthys flesus). Comp Biochem Physiol C 133:125–35
  • Hussain S, Anner RM, Anner BM. 1992. Cysteine protects Na,K-ATPase and isolated human lymphocytes from silver toxicity. Biochem Biophys Res Commun 189:1444–9
  • Jang M, Kim W, Lee S, Henry TB, Park J. 2014. Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48:11568–74
  • Jiang X, Miclăuş T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, et al. 2014. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 5390:1–9
  • Kataoka C, Ariyoshi T, Kawaguchi H. 2015. Salinity increases the toxicity of silver nanocolloids to Japanese medaka embryos. Environ Sci Nano 2:94–103
  • Kawano A, Haiduk C, Schirmer K, Hanner R, Lee LEJ, Dixon B, Bols NC. 2011. Development of a rainbow trout intestinal epithelial cell line and its response to lipopolysaccharide. Aquac Nutr 17:e241–52
  • Leibovitz A. 1963. The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere. Am J Hyg 78:173–80
  • Marshall WS, Grosell M. 2006. Ion osmoregulation, and acidbase balance. In: Evans DH, Claiborne JB, eds. The Physiology of Fishes. Boca Raton, FL: CRC Press Inc., 177–230
  • Massarsky A, Trudeau VL, Moon TW. 2014. Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol 38:861–73
  • Meissner T, Kuhnel D, Busch W, Oswald S, Richter V, Michaelis A, et al. 2010. Physical–chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. Nanotoxicology 4:196–206
  • Minghetti M, Leaver MJ, Carpene E, George SG. 2008. Copper transporter 1, metallothionein and glutathione reductase genes are differentially expressed in tissues of sea bream (Sparus aurata) after exposure to dietary or waterborne copper. Comp Biochem Physiol Part C 147:450–9
  • Minghetti M, Schnell S, Chadwick M. a, Hogstrand C, Bury NR. 2014. A primary FIsh Gill Cell System (FIGCS) for environmental monitoring of river waters. Aquat Toxicol 154:184–92
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–64
  • Niyogi S, Wood CM. 2004. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–92
  • Petris MJ, Mercer FJ, Culvenor JG, Lockhart P, Glooson PA, Camakaris J, et al. 1996. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–95
  • Piccinno F, Gottschalk F, Seeger S, Nowack B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1109
  • Salari Joo H, Kalbassi MR, Yu IJ, Lee JH, Johari SA. 2013. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat Toxicol 140-141:398–406
  • Schirmer K, Chan a. GJ, Greenberg BM, Dixon DG, Bols NC. 1997. Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol In Vitro 11:107–19
  • Schirmer K, Dixon DG, Greenberg BM, Bols NC. 1998. Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology 127:129–41
  • Schnell S, Stott LC, Hogstrand C, Wood CM, Kelly SP, Pärt P, et al. 2016. Procedures for the reconstruction, primary culture and experimental use of rainbow trout gill epithelia. Nat Protoc 11:490–8
  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, et al. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–34
  • Setyawati MI, Yuan X, Xie J, Leong DT. 2014. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials 35:6707–15
  • Tanneberger K, Knöbel M, Busser FJM, Sinnige TL, Hermens JLM, Schirmer K. 2013. Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ Sci Technol 47:1110–19
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34
  • Vo NTK, Bufalino MR, Hartlen KD, Kitaev V, Lee LEJ. 2014. Cytotoxicity evaluation of silica nanoparticles using fish cell lines. In Vitro Cell Dev Biol Anim 50:427–38
  • Walker PA, Kille P, Hurley A, Bury NR, Hogstrand C. 2008. An in vitro method to assess toxicity of waterborne metals to fish. Toxicol Appl Pharmacol 230:67–77
  • Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ. 2004. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquat Toxicol 70:137–157
  • Wood CM. 2012. Silver. In: Wood CM, Farrell AP, Brauner CJ, eds. Homeostasis and Toxicology of Non-Essential Metals: Volume 31B. Amsterdam, Netherlands: Elsevier, 1–65
  • Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K. 2015. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 9:54–63
  • Yue Y, Behra R, Sigg L, Schirmer K. 2016. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium. Nanotoxicology 5390:1–9
  • Zimnicka AM, Ivy K, Kaplan JH. 2011. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am J Physiol 300:C588–99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.