354
Views
25
CrossRef citations to date
0
Altmetric
Original Article

Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling

, , &
Pages 1545-1554 | Received 22 Jun 2016, Accepted 26 Sep 2016, Published online: 14 Nov 2016

References

  • Anastasio C, Martin ST. 2001. Atmospheric nanoparticles. In: Banfield JF, Navrotsky A, eds. Nanoparticles and the Environment. Vol 44. Mineralogical Society of America, 293–349
  • ANSES. 2013. Éléments issus des déclarations des substances à l’état nanoparticulaire. RAPPORT d’étude. ANSES (l’Agence nationale de sécurité sanitaire)
  • ANSES. 2014. Éléments issus des déclarations des substances à l’état nanoparticulaire. RAPPORT d’étude. ANSES (l’Agence nationale de sécurité sanitaire)
  • Arami H, Khandhar A, Liggitt D, Krishnan KM. 2015. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–607
  • Baumann J, Koser J, Arndt D, Filser J. 2014. The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. Sci Total Environ 484:176–84
  • Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, et al. 2013. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int J Mol Sci 14:13391–402
  • Bonnemain B. 1998. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J Drug Target 6:167–74
  • Caballero-Guzman A, Nowack B. 2016. A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut 213:502–17
  • Caballero-Guzman A, Sun T, Nowack B. 2015. Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag 36:33–43
  • Cengelli F, Grzyb JA, Montoro A, Hofmann H, Hanessian S, Juillerat-Jeanneret L. 2009. Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin. Chemmedchem 4:988–97
  • Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B. 2016. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10:436–44
  • Cornell RM, Schwertmann U. 2003. The Iron Oxides: Structures, Properties, Reactions, Occurences and Uses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA
  • ECB. 2003. Technical Guidance Document on Risk Assessment, European Chemicals Bureau
  • ECHA. 2008a. Guidance on information requirements and chemical safety assessment Part B: Hazard assessment
  • ECHA. 2008b. Guidance on information requirements and chemical safety assessment, Part E risk characterization
  • EPR. 2015. European Patent Office. European Patent Register [Online]. Available at: http://www.epo.org/index.html
  • EU Commission. 2011. Recommendation on the definition of nanomaterial (2011/696/EU). O. J. L 275: 3
  • Future Markets. 2012. The global market for nanomaterials 2002–2006: production volumes, revenues and end use markets. Future Markets Inc., [Online]. Available at: http://www.futuremarketsinc.com/index.php?option=com_content&view=article&id= 176&Itemid=73
  • Future Markets. 2014. The Global Market for Metal Oxide Nanoparticles 2014. Future Market
  • Garner KL, Suh S, Lenihan HS, Keller AA. 2015. Species sensitivity distributions for engineered nanomaterials. Environ Sci Technol 49:5753–9
  • Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B. 2015. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12:5581–602
  • Gottschalk F, Nowack B. 2013. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk. Integr Environ Assess Manage 9:79–86
  • Gottschalk F, Scholz RW, Nowack B. 2010. Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environ Model Software 25:320–32
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Guo HB, Barnard AS. 2013. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem A 1:17
  • Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, et al. 2015. Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res Int 22:11728–39
  • Hincapie I, Caballero-Guzman A, Hiltbrunner D, Nowack B. 2015. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Manage 43:398–406
  • Hochella MFJ, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS. 2008. Nanominerals, mineral nanoparticles, and Earth systems. Science 319:1631–5
  • Tockner K, Uehlinger U, Robinson CT. 2009. Rivers of Europe. Amsterdam: Academis Press
  • Karlsson HL, Gustafsson J, Cronholm P, Möller L. 2009. Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188:112–18
  • Keller A, McFerran S, Lazareva A, Suh S. 2013. Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1–17
  • Keller AA, Lazareva A. 2014. Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70
  • Konishi H, Xu H, Guo HB. 2012. Nature's Nanostructures. Singapore: Pan Stanford Pte. Ltd
  • Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. 2011. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta-General Subjects 1810:361–73
  • Liu HH, Cohen Y. 2014. Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48:3281–92
  • Luengo C, Brigante M, Antelo J, Avena M. 2006. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. J Colloid Interface Sci 300:511–18
  • Mahapatra I, Sun TY, Clark JRA, Dobson PJ, Hungerbuehler K, Owen R, Nowack B, Lead J. 2015. Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J Nanobiotechnol 13
  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. 2011. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–76
  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, Stroeve P. 2010. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 75:300–9
  • Mahmoudi M, Simchi A, Milani AS, Stroeve P. 2009. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–18
  • Miyata T, Ishino Y, Hirashima T. 1978. Catalytic reduction of aromatic nitro-compounds with hydrazine hydrate in presence of iron(Iii) oxide hydroxide. Georg Thieme Verlag 1978:834–5
  • Mohapatra M, Anand S. 2010. Synthesis and applications of nano-structured iron oxides/hydroxides- a review. Int J Eng Sci Technol 2:20
  • Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B. 2012. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res Int 19:550–8
  • Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–53
  • Navrotsky A, Mazeina L, Majzlan J. 2008. Size-driven structural and thermodynamic complexity in iron oxides. Geochimica Et Cosmochimica Acta 72:A673
  • Nowack B, Baalousha M, Bornhoft N, Chaudhry Q, Cornelis G, Cotterill J, et al. 2015. Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environ Sci-Nano 2:421–8
  • Pereira MC, Oliveira LCA, Murad E. 2012. Iron oxide catalysts: Fenton and Fenton-like reactions - a review. Clay Minerals 47:285–302
  • Poulton SW, Raiswell R. 2002. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am J Sci 302:774–805
  • Praetorius A, Arvidsson R, Molander S, Scheringer M. 2013. Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environ Sci: Process Impacts 15:161–168
  • Prodan AM, Iconaru SL, Ciobanu CS, Chifiriuc MC, Stoicea M, Predoi D. 2013. Iron oxide magnetic nanoparticles: characterization and toxicity evaluation by in vitro and in vivo assays. J Nanomater 2013.doi:10.1155/2013/587021
  • Rajabi F, Kakeshpour T, Saidi MR. 2013. Supported iron oxide nanoparticles: Recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides. Catalysis Commun 40:13–17
  • Schmid K, Riediker M. 2008. Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260
  • Semenzin E, Lanzellotto E, Hristozov D, Critto A, Zabeo A, Giubilato E, Marcomini A. 2015. Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study. Environ Toxicol Chem 34:2644–2659
  • Sørensen MA, Ingerslev F, Bom K, Lassen C, Christensen F, Warming M. 2015. Survey of products with nanosized pigments
  • Sposito G. 1989. Iron Oxides: The Chemistry of Soils. New York: Oxford University Press, 277
  • Sreeram KJ, Indumathy R, Rajaram A, Nair BU, Ramasami T. 2006. Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize. Mater Res Bull. 41:1875–1881
  • SRI Consulting. 2011. The Chemical Economics Handbook: Inorganic Chemical Pigments, 8–48
  • Sumner ME. 1963. Effect of iron oxides on positive and negative charges in clays and soils. Clay Min 1963:218–226
  • Sun TY, Bornhoft NA, Hungerbuhler K, Nowack B. 2016. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50:4701–11
  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76
  • Tran N, Webster TJ. 2010. Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–67
  • Uheida A, Iglesias M, Fontas C, Hidalgo M, Salvado V, Zhang Y, Muhammed M. 2006a. Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe3O4 nanoparticles. J Colloid Interface Sci 301:402–8
  • Uheida A, Salazar-Alvarez G, Bjorkman E, Yu Z, Muhammed M. 2006b. Fe3O4 and gamma-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J Colloid Interface Sci 298:501–7
  • USP&TO. 2015. United States Patent and Trademark Office. Patent Full-Text Databases. Available at: http://patft.uspto.gov/netahtml/PTO/index.html
  • Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, et al. 2012. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nano 7:520–4
  • Wang Y, Kalinina A, Sun T, Nowack B. 2016. Probabilistic modeling of the flows and environmental risks of nano-silica. Sci Total Environ 545–546:67–76
  • Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, et al. 1989. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–73
  • Zhang Y, Zhu L, Zhou Y, Chen JM. 2015. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci-China 30:223–30
  • Zhu XS, Tian SY, Cai ZH. 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7:e46286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.