437
Views
103
CrossRef citations to date
0
Altmetric
Original Article

Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant

ORCID Icon, , , , , , , & show all
Pages 157-167 | Received 04 May 2016, Accepted 30 Dec 2016, Published online: 19 Jan 2017

References

  • Ali D, Yadav PG, Kumar S, Ali H, Alarifi S, Harrath AH. 2014. Sensitivity of freshwater pulmonate snail Lymnaea luteola L., to silver nanoparticles. Chemosphere 104:134–40.
  • Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–6.
  • Bao D, Oh ZG, Chen Z. 2016. Characterization of silver nanoparticles internalized by arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32.
  • Benn TM, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. 2010. The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–82.
  • Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–9.
  • Chen J, Tang YQ, Li Y, Nie Y, Hou L, Li XQ, et al. 2014. Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere 104:141–8.
  • Choi O, Hu Z. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–8.
  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, et al. 2014. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–36.
  • Consoli E, Croce R, Dunlap DD, Finzi L. 2005. Diffusion of light-harvesting complex II in the thylakoid membranes. EMBO Rep 6:782–6.
  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA. 2015. Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. Acs Nano 9:11737–49.
  • Demmig-Adams B, Adams WW. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–6.
  • Deng C, Zhang D, Pan X, Chang F, Wang S. 2013. Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. J. Photochem Photobiol B, Biol 127:1–7.
  • Dewez D, Oukarroum A. 2012. Silver nanoparticles toxicity effect on photosystem II photochemistry of the green algaChlamydomonas reinhardtii treated in light and dark conditions. Toxicol Environ Chem 94:1536–46.
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–31.
  • Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta-Gen Subj 990:87–92.
  • Gorka DE, Osterberg JS, Gwin CA, Colman BP, Meyer JN, Bernhardt ES, et al. 2015. Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol 49:10093–8.
  • Havelaar AC, de Gast IL, Snijders S, Beerens CEMT, Mancini GMS, Verheijen FW. 1998. Characterization of a heavy metal ion transporter in the lysosomal membrane. FEBS Lett 436:223–7.
  • He D, Bligh MW, Waite TD. 2013. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ Sci Technol 47:9148–56.
  • Huang W, Shao H, Li W, Jiang H, Chen Y. 2016. Effects of urea on growth and photosynthetic metabolism of two aquatic plants (Cabomba caroliniana A. Gray and Elodea nuttallii (Planch.) H. St. John). Aquat Bot. [Epub ahead of print]. doi:10.1016/j.aquabot.2016.04.003.
  • Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–93.
  • Jaspers P, Kangasjärvi J. 2010. Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–13.
  • Jiang HS, Li M, Chang FY, Li W, Yin LY. 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–6.
  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY. 2014. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–405.
  • Jiang X, Miclaus T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, et al. 2015. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–9.
  • Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–44.
  • Keller AA, McFerran S, Lazareva A, Suh S. 2013. Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692.
  • Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. 2012. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100:1033–43.
  • Kim Tiam S, Laviale M, Feurtet-Mazel A, Jan G, Gonzalez P, Mazzella N, et al. 2015. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry. Aquat Toxicol 165:160–71.
  • Klughammer C, Schreiber U. 2008. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes 1:27–35.
  • Kramer DM, Johnson G, Kiirats O, Edwards GE. 2004. New fluorescence parameters for the determination of QA Redox State and Excitation Energy Fluxes. Photosyn Res 79:209–18.
  • Krause GH, Weis E. 1984. Chlorophyll fluorescence as a tool in plant physiology : II. Interpretation of fluorescence signals. Photosyn Res 5:139–57.
  • Leclerc S, Wilkinson KJ. 2014. Bioaccumulation of nanosilver by Chlamydomonas reinhardtii-nanoparticle or the free ion? Environ Sci Technol 48:358–64.
  • Li X, Schirmer K, Bernard L, Sigg L, Pillai S, Behra R. 2015. Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci-Nano 2:594–602.
  • Li Y, Zhang W, Li K, Yao Y, Niu J, Chen Y. 2012. Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: mechanisms and kinetics. Environ Pollut 164:259–66.
  • Liu J, Hurt RH. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–75.
  • Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R. 2011. Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22:375101.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–64.
  • Navarro E, Wagner B, Odzak N, Sigg L, Behra R. 2015. Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environ Sci Technol 49:8041–7.
  • Nowack B, Bucheli TD. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22.
  • Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, et al. 2015. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. Acs Nano 9:9573–84.
  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D. 2013. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32:902–7.
  • Oukarroum A, Bras S, Perreault F, Popovic R. 2012. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–5.
  • Oukarroum A, Polchtchikov S, Perreault F, Popovic R. 2011. Temperature influence on silver nanoparticles inhibitory effect on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Environ Sci Pollut Res 19:1755–62.
  • Oxborough K, Baker NR. 1997. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynth Res 54:135–42.
  • Piccapietra F, Allue CG, Sigg L, Behra R. 2012. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7.
  • Pokhrel LR, Dubey B. 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–32.
  • Ralph PJ, Gademann R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–37.
  • Ribeiro F, Gallego-Urrea JA, Goodhead RM, Van Gestel CAM, Moger J, Soares AMVM, et al. 2015. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: the influence of silver behaviour in solution. Nanotoxicology 9:686–95.
  • Solioz M, Odermatt A. 1995. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–21.
  • Sun C, Yin N, Wen R, Liu W, Jia Y, Hu L, et al. 2015. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 52:210–21.
  • Sun TY, Gottschalk F, Hungerbuhler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76.
  • Thomas G, Stark HJ, Wellenreuther G, Dickinson BC, Kupper H. 2013. Effects of nanomolar copper on water plants-comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions. Aquat Toxicol 140-141:27–36.
  • Van Koetsem F, Xiao Y, Luo Z, Du Laing G. 2015. Impact of water composition on association of Ag and CeO2 nanoparticles with aquatic macrophyte Elodea canadensis. Environ Sci Pollut Res Int 23:5277–87.
  • Wellburn A, Lichtenthaler H. 1984. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C, ed. Advances in Photosynthesis Research. Netherlands: Springer, 9–12.
  • White AJ, Critchley C. 1999. Rapid light curves A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72.
  • Yang Y, Wang J, Xiu Z, Alvarez PJ. 2013. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–94.
  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. 2011. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–7.
  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES. 2012. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674.
  • Yin N, Liu Q, Liu J, He B, Cui L, Li Z, et al. 2013. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9:1831–41.
  • Zhang Y, Ferguson SA, Watanabe F, Jones Y, Xu Y, Biris AS, et al. 2013. Silver nanoparticles decrease body weight and locomotor activity in adult male rats. Small 9:1715–20.
  • Zhang Y, Yin L, Jiang HS, Li W, Gontero B, Maberly SC. 2014. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosyn Res 121:285–97.
  • Zhao CM, Wang WX. 2011. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–92.
  • Zou X, Li P, Huang Q, Zhang H. 2016. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. Aquat Toxicol 176:97–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.