583
Views
82
CrossRef citations to date
0
Altmetric
Original Article

Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos

, , , , , , , & show all
Pages 201-209 | Received 04 Jul 2016, Accepted 04 Dec 2016, Published online: 24 Jan 2017

References

  • Andrady AL. 2011. Microplastics in the marine environment. Mar Pollut Bull 62:1596–605.
  • Baker TJ, Tyler CR, Galloway TS. 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–71.
  • Bergami E, Bocci E, Vannuccini ML, Monopoli MP, Salvati A, Dawson KA, Corsi I. 2016. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimps Artemia franciscana larvae. Ecotoxicol Env Saf 123:18–25.
  • Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, et al. 2011. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5:557–67.
  • Blasco J, Corsi I, Matranga V. 2015. Particles in the oceans: implication for a safe marine environment. Mar Environ Res 111:1–4.
  • Bodnar A. 2016. Lessons from the sea: marine animals provide models for biomedical research. Environ SciPolicy Sustain Dev 58:16–25.
  • Bonaventura R, Zito F, Costa C, Giarrusso S, Celi F, Matranga V. 2011. Stress response gene activation protects sea urchin embryos exposed to X-rays. Cell Stress Chaperones 16:681–7.
  • Bradham C, McClay DR. 2006. p38 MAPK in development and cancer. Cell Cycle 5:824–8.
  • Browne MA, Galloway T, Thompson R. 2007. Microplastic-an emerging contaminant of potential concern? Integr Environ Assess Manag 3:559–61.
  • Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351–66.
  • Burić P, Jakšić Ž, Štajner L, Dutour Sikirić M, Jurašin D, Cascio C, et al. 2015. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Mar Environ Res 111:50–9.
  • Canesi L, Ciacci C, Bergami E, Monopoli MP, Dawson KA, Papa S, et al. 2015. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res 111:34–40.
  • Canesi L, Corsi I. 2016. Effects of nanomaterials on marine invertebrates. Sci Total Environ S0048-9697:30086–9.
  • Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, et al. 2016. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ Res 150:73–81.
  • Carboni S, Hughes AD, Atack T, Tocher DR, Migaud H. 2013. Influence of broodstock diet on somatic growth, fecundity, gonad carotenoids and larval survival of sea urchin. Aquac Res 46:1–8.
  • Corsi I, Cherr GN, Lenihan HS, Labille J, Hassellov M, Canesi L, et al. 2014. Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano 8:9694–709.
  • Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I. 2014. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol 48:12302–11.
  • Fairbairn EA, Keller AA, Mädler L, Zhou D, Pokhrel S, Cherr GN. 2011. Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J Hazard Mater 192:1565–71.
  • Fleischer CC, Payne CK. 2012. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 116:8901–7.
  • Fu H, Subramanian RR, Masters SC. 2000. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–47.
  • Galgani F, Fleet D, Van Franeker J, Katsanevakis S, Maes T, Mouat J, et al. 2010. Marine Strategy Framework Directive – Task Group 10 Report Marine litter. JRC Scientific and Technical Reports 1 – 57. JRC 58104 EUR 24340 EN. DOI 10.2788/86941.
  • Gambardella C, Aluigi MG, Ferrando S, Gallus L, Ramoino P, Gatti AM, et al. 2013. Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquat Toxicol 130–131:77–85.
  • Gambardella C, Morgana S, Bari GD, Ramoino P, Bramini M, Diaspro A, et al. 2015. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. Chemosphere 139:486–95.
  • Hamdoun A, Epel D. 2007. Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA104:1745–50.
  • Hartmann N, Nolte T, Sørensen M, Jensen P, Baun A. 2015. Aquatic ecotoxicity testing of nanoplastics. Lessons Learned From Nanoecotoxicology. DTU Environment.
  • [Online] Available at: http://www.ncbi.nlm.nih.gov/tools/primer-blast/
  • Koelmans AA, Besseling E, Shim WJ. 2015. Nanoplastics in the aquatic environment. Critical review. In: Bergmann M, Gutow L, Klages M, eds. Marine Anthropogenic Litter. Cham: Springer, 325–440
  • Korkina LG, Deeva IB, De Biase A, Iaccarino M, Oral R, Warnau M, Pagano G. 2000. Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis 21:213–20.
  • Kruidering M, Evan GI. 2000. Caspase-8 in apoptosis: the beginning of IUBMB Life 50:85–90.
  • Kühn S, Bravo Rebolledo EL, van Franeker JA. 2015. Deleterious effects of litter on marine life. In: Bergmann M, Gutow L, Klages M, eds. Marine Anthropogenic Litter. Cham: Springer, 75–116.
  • Lambert S, Wagner M. 2016. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–8.
  • Larson JK, Hutz RJ. 2010. Gold nanoparticles alter sea urchin development to pluteus stage. Biol Reprod 83:285.
  • Lawrence JM. 2013. Sea urchins: Biology and Ecology. 3rd ed. London: Elsevier, 550.
  • Magesky A, Pelletier É. 2015. Toxicity mechanisms of ionic silver and polymer-coated silver nanoparticles with interactions of functionalized carbon nanotubes on early development stages of sea urchin. Aquat Toxicol 167:106–23.
  • Matranga V, Corsi I. 2012. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40.
  • Marengo B, De Ciucis CG, Ricciarelli R, Furfaro AL, Colla R, Canepa E, et al. 2013. p38MAPK inhibition: a new combined approach to reduce neuroblastoma resistance under etoposide treatment. Cell Death Dis 4:e589.
  • Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. 2012. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 7:e31750.
  • Minetto D, Libralato G, Volpi Ghirardini A. 2014. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: An overview. Environ Int 66:18–27.
  • Morroni L, Pinsino A, Pellegrini D, Regoli F, Matranga V. 2016. Development of a new integrative toxicity index based on an improvement of the sea urchin embryo toxicity test. Ecotoxicol Environ Saf 123:2–7.
  • MSFD, Marine Strategy Framework Directive, 2008/56/CE Official Journal of the European Union, L. 164/19.
  • Petros RA, De Simone JM. 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–27.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Ac Res 29:2002–7.
  • Piacentino ML, Ramachandran J, Bradham CA. 2015. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos. Development 142:943–52.
  • Pinsino A, Matranga V, Trinchella F, Roccheri MC. 2010. Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. Ecotoxicology 19:555–62.
  • Pinsino A, Roccheri MC, Costa C, Matranga V. 2011a. Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton. Toxicol Sci 123:217–30.
  • Pinsino A, Turturici G, Sconzo G, Geraci F. 2011b. Rapid changes in heat-shock cognate 70 levels, heat-shock cognate phosphorylation state, heat-shock transcription factor, and metal transcription factor activity levels in response to heavy metal exposure during sea urchin embryonic development. Ecotoxicology 20:246–54.
  • Pinsino A, Roccheri MC, Matranga V. 2014. Manganese overload affects p38 MAPK phosphorylation and metalloproteinase activity during sea urchin embryonic development. Mar Environ Res 93:64–9.
  • Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V. 2015. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci Rep 5:14492
  • Plastics – The Facts. 2015. An analysis of European plastics production, demand and waste data, Brussels, Belgium: Plastics Europe. [Online] Available at: 2015. http://www.plasticseurope.org/Document/plastics—the-facts-2015.aspx
  • Ragusa MA, Costa S, Gianguzza M, Roccheri MC, Gianguzza F. 2013. Effects of cadmium exposure on sea urchin development assessed by SSH and RT-qPCR: metallothionein genes and their differential induction. Mol Biol Rep 40:2157–67.
  • Roccheri MC, Agnello M, Bonaventura R, Matranga V. 2004. Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321:80–7.
  • Rossi G, Barnoud J, Monticelli L. 2014. Polystyrene nanoparticles perturb lipid membranes. J Phys Chem Lett 5:241–6.
  • Salvati A, Aberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson KA. 2011. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine 7:818–26.
  • Sarsour EH, Kalen AL, Goswami PC. 2014. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 20:1618–27.
  • Sea Urchin Genome Sequencing Consortium. 2006. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–52.
  • Siller L, Lem Loh ML, Piticharoenphun S, Mendis BG, Horrocks BR, Brümmer F, Medaković D. 2013. Silver nanoparticle toxicity in sea urchin Paracentrotus lividus. Environ Pollut 178:498–502.
  • Snell TW, Hicks DG. 2011. Assessing toxicity of nanoparticles using Brachionus manjavacas (Rotifera). Environ toxicol 26:146–152.
  • Tamboline CR, Burke RD. 1992. Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells. J Exp Zool 262:51–60.
  • Torres-Duarte C, Adeleye AS, Pokhrel S, Mädler L, Keller AA, Cherr GN. 2016. Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology 10:671–9.
  • Tsai YP, Teng SC, Wu KJ. 2008. Direct regulation of HSP60 expression by c-MYC induces transformation. FEBS Lett 582:4083–8.
  • Voellmy R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–33.
  • Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA. 2013. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5:10868–76.
  • Ward JE, Kach DJ. 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res68:137–42.
  • Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA. 2012. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem SETAC 31:2490–7.
  • Wright SL, Thompson RC, Galloway TS. 2013. The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–92.
  • Wu B, Torres-Duarte C, Cole BJ, Cherr GN. 2015. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers. Environ Sci Technol 49:5760–70.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–807.
  • Zhang H, Kuo Y-Y, Gerecke AC, Wang J. 2012. Co-release of hexabromocyclododecane (hbcd) and nano- and microparticles from thermal cutting of polystyrene foams. Environ Sci Technol 46:10990–6.
  • Zhu H, Qiu H, Yoon HW, Huang S, Bunn HF. 1999. Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells. Proc Natl Acad Sci USA 96:14742–7.
  • Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V. 2003. Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 264:217–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.