253
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate

, , , , , & show all
Pages 236-246 | Received 17 Feb 2016, Accepted 26 Jan 2017, Published online: 20 Feb 2017

References

  • Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MAS. 2015. Comparative toxicity of copper oxide bulk and nanoparticles in Nile Tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57.
  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB. 2013. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–15.
  • Baginsky S. 2009. Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120.
  • Chen DS, Chan KM. 2011. Differentially expressed proteins in zebrafish liver cells exposed to copper. Aquat Toxicol 104:270–7.
  • Cruz-Lacierda ER, Lester RJG, Eusebio PS, Marcial HS, Pedrajas SAG. 2001. Occurrence and histopathogenesis of a didymozoid trematode (Gonapodasmius epinepheli) in pond-reared orange-spotted grouper, Epinephelus coioides. Aquaculture 201:211–17.
  • Chen QL, Gong Y, Luo Z, Zheng JL, Zhu QL. 2013. Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco. Aquat Toxicol 142–143:380–6.
  • Dail MB, Shack LA, Chambers JE, Burgess SC. 2008. Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol Sci 106:556–69.
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–6.
  • Du ZY, Liu YJ, Tian LX, Wang JT, Wang Y, Liang GY. 2005. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquacult Nutr 11:139–46.
  • Finney DJ. 1971. Statistical Analysis. Cambridge: Cambridge University Press.
  • Fokina NN, Ruokolainen TR, Nemova NN, Bakhmet IN. 2013. Changes of blue mussels Mytilus edulis L. lipid composition under cadmium and copper toxic effect. Biol Trace Elem Res 154:217–25.
  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ. 2011. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–62.
  • Gomes T, Chora S, Pereira CG, Cardoso C, Bebianno MJ. 2014. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: an exploratory biomarker discovery. Aquat Toxicol 155:327–36.
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, et al. 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–86.
  • Gluth G, Hanke W. 1985. A comparison of physiological changes in carp, Cyprinus carpio, induced by several pollutants at sublethal concentrations. I. The dependency on exposure time. Ecotoxicol Environ Saf 9:179–88.
  • Gong B, Zhang C, Li X, Wen D, Wang SS, Shi QH, et al. 2014. Identification of NaCl and NaHCO3 stress responsive proteins in tomato roots using iTRAQ-based analysis. Biochem Biophys Res Commun 446:417–22.
  • Humason GL. 1979. Animal Tissue Techniques. New York: W.H. Freeman.
  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, et al. 2012. Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31.
  • Ji C, Wu H, Wei L, Zhao J, Yu J. 2013. Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2’,4,4’-tetrabromodiphenyl ether (BDE 47). Aquat Toxicol 140--141:449–57.
  • Jia R, Cao LP, Du JL, Wang JH, Liu YJ, Jeney G, et al. 2014. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio). Aquat Toxicol 152:11–19.
  • Lin YH, Shie YY, Shiau SY. 2008. Dietary copper requirements of juvenile grouper Epinephelus malabaricus. Aquaculture 274:161–5.
  • Long M, Zhao J, Li TT, Tafalla C, Zhang QQ, Wang XH, et al. 2015. Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida. J Proteomics 122:41–54.
  • Luo Z, Tan XY, Zheng JL, Chen QL, Liu CX. 2011. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture 319:150–5.
  • Lu KL, Xu WN, Li XF, Liu WB, Wang LN, Zhang CN. 2013. Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquaculture 408–409:160–8.
  • Miwa Y, Takahide Y, Yuniko YS, Hisayuki A, Tsutomu M. 2012. Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338:111–17.
  • Mayilyan KR, Kang YH, Dodds AW, Sim RB. 2008. The complement system in innate immunity. In: Heine H, ed. Innate Immunity of Plants, Animals, and Humans, vol. 21. Berlin, Heidelberg: Springer: 219–36.
  • Mudunkotuwa IA, Pettibone JM, Grassian VH. 2012. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 46:7001–10.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–57.
  • Rim KT, Song SW, Kim HY. 2013. Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 4:177–86.
  • Service RF. 2003. American Chemical Society meeting. Nanomaterials show signs of toxicity. Science 300:243.
  • Shaw BJ, Handy RD. 2011. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–97.
  • Sovová T, Boyle D, Sloman KA, Pérez CV, Handy RH. 2014. Impaired behavioural response to alarm substance in rainbow trout exposed to copper nanoparticles. Aquat Toxicol 152:195–204.
  • Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J. 2012. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26:351–61.
  • Saravanan M, Kumar KP, Ramesh M. 2011. Haematological and biochemical responses of freshwater teleost fish; Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pest Biochem Physiol 100:206–11.
  • Strange RJ, Schreck CB. 1978. Anesthetic and handling stress on survival and cortisol concentration in yearling Chinook salmon (Oncorhynchus tshawytscha). J Fish Res Board Can 35:345–9.
  • Sun H, Liu Y, Gai Y, Geng J, Chen L, Liu H, et al. 2015. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. BMC Genomics 16:652.
  • Słaba M, Gajewska E, Bernat P, Fornalska M, Długoński J. 2013. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environ Sci Pollut Res 20:3423–34.
  • Tse WKF, Sun J, Zhang HM, Law AYS, Yeung BHY, Chow SC, et al. 2013. Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica). J Proteomics 89:81–94.
  • Thompson EL, Taylor DA, Nair SV, Birch G, Haynes PA, Raftos DA. 2012. Proteomic discovery of biomarkers of metal contamination in Sydney rock oysters (Saccostrea glomerata). Aquat Toxicol 109:202–12.
  • US-EPA. 2007. Aquatic Life Ambient Freshwater Quality Criteria-copper (CAS Registry Number 7440-50-8). Washington, DC: U.S. Environmental Protection Agency Office of Water, Office of Science and Technology.
  • Wang T, Long X, Cheng Y, Liu Z, Yan S. 2014. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol 152:96–104.
  • Wang T, Long X, Cheng Y, Liu Z, Yan S. 2015. A comparison effect of copper nanoparticles versus copper sulphate on juvenile Epinephelus coioides: growth parameters, digestive enzymes, body composition and histology as biomarkers. Int J Genomics. 2015:783021.
  • Wu H, Jia H, Ma X, Wang S, Yao Q, Xu W, et al. 2014. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. J Proteomics 105:19–30.
  • Xu P, Xu J, Liu S, Yang Z. 2012. Nano copper induced apoptosis in podocytes via increasing oxidative stress. J Hazard Mater 241–242:279–86.
  • Xu WD, Yang XY, Li DH, Zheng KD, Qiu PC, Zhang W, et al. 2015. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: a comparative proteomic study. J Proteomics 113:57–72.
  • Yukselen Y, Kaya A. 2003. Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions. Water Air Soil Pollut 145:155–68.
  • Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, et al. 2013. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 93:179–206.
  • Zaghloul KH, Omar WA, Abo-Hegab S. 2006. Toxicity specificity of copper in some freshwater fishes. Egypt J Zool 47:383–400.
  • Zhang Y, Zhang W, Zhang L, Zhu T, Tian J, Li X, et al. 2004. Two distinct cytochrome P450 aromatases in the orange-spotted grouper (Epinephelus coioides): cDNA cloning and differential mRNA expression. J Steroid Biochem Mol Biol 92:39–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.