456
Views
54
CrossRef citations to date
0
Altmetric
Original Article

Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships

, , , , &
Pages 247-255 | Received 17 Dec 2016, Accepted 26 Jan 2017, Published online: 20 Feb 2017

References

  • Attard E, Degrange V, Klumpp K, Richaume A, Soussana JF, Le Roux X. 2008. How do grassland management history and bacterial micro-localisation affect the response of bacterial community structure to changes in aboveground grazing regime? Soil Biol Biochem 40:1244–52.
  • Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets B, et al. 2010. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underly the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol 12:315–26.
  • Baalousha M. 2009. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–101.
  • Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L. 2010. An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–65.
  • Broos K, Mertens J, Smolders E. 2005. Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: a comparative study. Environ Toxicol Chem 24:634–40.
  • Cathcart R, Schwiers E, Ames BN. 1983. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–6.
  • Choi OK, Hu ZQ. 2009. Nitrification inhibition by silver nanoparticles. Water Sci Technol 59:1699.
  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Brink N, van den, Nickel C. 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–64.
  • Dalzell DJB, Alte S, Aspichueta E, de la Sota A, Etxebarria J, Gutierrez M, et al. 2002. A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere 47:535–45.
  • Dassonville N, Guillaumaud N, Piola F, Meerts P, Poly F. 2011. Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biol Invas 13:1115–33.
  • Editorial Nature Nanotechnology. 2011. The dose makes the poison. Nat Nanothechnol 6:329.
  • Foucaud L, Wilson MR, Brown DM, Stone V. 2007. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9.
  • Freitag T, Chang L, Clegg C, Prosser J. 2005. Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl Environ Microbiol 71:8323–8334.
  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC. 2009. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359.
  • Gelfand I, Yakir D. 2008. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol Biochem 40:415–24.
  • Ge Y, Schimel J, Holden P. 2011. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–64.
  • Haanstra L, Doelman P, Voshaar JHO. 1985. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–7.
  • Hadri HE, Hackley VA. 2016. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix. Environ Sci Nano doi: 10.1039/C6EN00322B.
  • Holden PA, Schimel JP, Godwin HA. 2014. Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–8.
  • Hotze EM, Bottero JY, Wiesner MR. 2010. Theoretical framework for nanoparticle reactivity as a function of aggregation state. Langmuir 26:11170–5.
  • Hotze EM, Phenrat T, Lowry GV. 2010. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909.
  • Jeong E, Chae SR, Kang ST, Shin HS. 2012. Effects of silver nanoparticles on biological nitrogen removal processes. Water Sci Technol 65:1298–303.
  • Kah M. 2015. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front Chem 3:64.
  • Keller AA, McFerran S, Lazareva A, Suh S. 2013. Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17.
  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, et al. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–7.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–51.
  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–6.
  • Kowalchuk G, Stephen J. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529.
  • Leininger S, Urich T, Schloter M. 2006. Archaea predominate among ammonia-oxydizing prokaryotes in soils. Nature 442:806–9.
  • Le Roux X, Bouskill NJ, Niboyet A, Barthes L, Dijkstra P, Field CB, et al. 2016. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. Front Microbiol 7:728.
  • Liang Z, Das A, Hu Z. 2010. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44:5432–8.
  • Li X, Zhu YG, Cavagnaro TR, Chen M, Sun J, Chen X, Qiao M. 2009. Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria? Plant Soil 324:209–17.
  • Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–9.
  • Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, et al. 2016. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biol Biochem 101:195–206.
  • Maximova N, Dahl O. 2006. Environmental implications of aggregation phenomena: current understanding. Curr Opin Coll Interf Sci 11:246–66.
  • Menard A, Drobne D, Jemec A. 2011. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–84.
  • Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E. 2009. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3:916–23.
  • Mitrano DM, Motellier S, Clavaguera S, Nowack B. 2015. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–47.
  • Neal AL. 2008. What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?. Ecotoxicology 17: 362–71.
  • Nowka B, Daims H, Spieck E. 2015. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol 81:745–53.
  • Ollivier J, Schacht D, Kindler R, Groeneweg J, Engel M, Wilke BM, et al. 2013. Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions. Front Microbiol 4:22.
  • Ollivier J, Wanat N, Austruy A, Hitmi A, Joussein E, Welzl G, et al. 2012. Abundance and diversity of ammonia-oxidizing prokaryotes in the root–rhizosphere complex of miscanthus × giganteus grown in heavy metal-contaminated soils. Microb Ecol 64:1038–46.
  • Pereira e Silva MC, Poly F, Guillaumaud N, Dirk van Elsas J, Falcão Salles J. 2012. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH. Front Microbiol 3:77.
  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S. 2014. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–25.
  • Pokhrel LR, Dubey B, Scheuerman PR. 2014. Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of citrate functionalized silver nanoparticles. Environ Sci Nano 1:45–54.
  • Prosser JI, Nicol GW. 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–31.
  • Rahmatpour S, Shirvani M, Mosaddeghi MR, Nourbakhsh F, Bazarganipour M. 2017. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 285:313–22.
  • R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Roux-Michollet D, Czarnes S, Adam B, Berry D, Commeaux C, Guillaumaud N, et al. 2008. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol Biochem 40:1836–45.
  • Ruyters S, Nicol GW, Prosser JI, Lievens B, Smolders E. 2013. Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil: a stable isotope probing study. Soil Biol Biochem 58:244–7.
  • Schleper C, Jurgens G, Jonuscheit M. 2005. Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–88.
  • Schlich K, Hund-Rinke K. 2015. Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–30.
  • Schramm A, Beer D, de Heuvel JC, van den Ottengraf S, Amann R. 1999. Microscale distribution of populations and activities of nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65:3690–6.
  • Servin A, Elmer W, Mukherjee A, Torre-Roche RD, la Hamdi H, White JC, et al. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:1–21.
  • Shipley B. 2002. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference. Cambridge, UK: Cambridge University Press.
  • Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, et al. 2009. Size- composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–9.
  • Simonin M, Guyonnet JP, Martins JMF, Ginot M, Richaume A. 2015a. Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–35.
  • Simonin M, Richaume A. 2015. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res Int 22:13710–23.
  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T. 2016. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:33643.
  • Simonin M, Roux XL, Poly F, Lerondelle C, Hungate BA, Nunan N, Niboyet A. 2015b. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply. Microb Ecol 70:809–18.
  • Subrahmanyam G, Hu HW, Zheng YM, Gattupalli A, He JZ, Liu YR. 2014. Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Appl Soil Ecol 77:59–67.
  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76.
  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–92.
  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C. 2005. Novel genes for nitrite reductase and amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–95.
  • Valentine DL. 2007. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–23.
  • Vitorge E, Szenknect S, Martins JMF, Barthès V, Auger A, Renard O, Gaudet JP. 2014. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: syntheses and characterizations. Environ Pollut 184:605–12.
  • Vitorge E, Szenknect S, Martins JMF, Gaudet JP. 2013. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling. Environ Sci Process Impacts 15:1590–1600.
  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X. 2007. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–9.
  • Wessén E, Hallin S. 2011. Abundance of archaeal and bacterial ammonia oxidizers – possible bioindicator for soil monitoring. Ecol Indicat 11:1696–8.
  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–34.
  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, et al. 2011. Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–36.
  • Zhalnina K, de Quadros PD, Camargo FAO, Triplett EW. 2012. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:210.
  • Zheng X, Chen Y, Wu R. 2011. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45: 7284–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.