299
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Teratogenic hazard of BPEI-coated silver nanoparticles to Xenopus laevis

, , , , , & show all
Pages 405-418 | Received 02 Aug 2016, Accepted 18 Mar 2017, Published online: 13 Apr 2017

References

  • Akinc A, Thomas M, Klibanov AM, Langer R. 2005. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–63.
  • American Society for Testing and Materials (ASTM). 1998. Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) E-1439–E1498.
  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102
  • Austin CA, Hinkley GK, Mishra AR, Zhang Q, Umbreit TH, Betz MW, et al. 2016. Distribution and accumulation of 10 nm silver nanoparticles in maternal tissues and visceral yolk sac of pregnant mice, and a potential effect on embryo growth. Nanotoxicology 10:654–61.
  • Bacchetta R, Moschini E, Santo N, Fascio U, Del Giacco L, Freddi S, et al. 2014. Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis. Nanotoxicology 8:728–44.
  • Bacchetta R, Santo N, Fascio U, Moschini E, Freddi S, Chirico G, et al. 2012. Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology 6:381–98.
  • Bantle JA, Finch RA, Fort DJ, Stover EL, Hull M, Kumsher-King M, Gaudet-Hull AM. 1999. Phase III interlaboratory study of FETAX. Part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. J Appl Toxicol 19:447–72.
  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–910.
  • Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–9.
  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–200.
  • Bonfanti P, Colombo A, Orsi F, Nizzetto I, Andrioletti M, Bacchetta R, et al. 2004. Comparative teratogenicity of Chlorpyrifos and Malathion on Xenopus laevis development. Aquat Toxicol 70:189–200.
  • Bonfanti P, Moschini E, Saibene M, Bacchetta R, Rettighieri L, Calabri L, et al. 2015. Do nanoparticle physico-chemical properties and developmental exposure window influence nano ZnO embryotoxicity in Xenopus laevis? Int J Environ Res Public Health 12:8828–48.
  • Browning LM, Lee KJ, Nallathamby PD, Xu XH. 2013. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chem Res Toxicol 26:1503–13.
  • Caccia M, Sironi L, Collini M, Chirico G, Zanoni I, Granucci F. 2008. Image filtering for two-photon deep imaging of lymphonodes. Eur Biophys J 37:979–87.
  • Chae JP, Park MS, Hwang YS, Min BH, Kim SH, Lee HS, Park MJ. 2015. Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos. Chemosphere 120:52–8.
  • Cho JG, Kim KT, Ryu TK, Lee J, Kim JE, Kim J, et al. 2013. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. Biomed Res Int 2013:494671.
  • Dawson DA, Bantle JA. 1987. Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay–Xenopus (FETAX). J Appl Toxicol 7:237–44.
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–31.
  • Finney DJ. 1971. Statisical logic in the monitoring of reactions to therapeutic drugs. Methods Inf Med 10:237–45.
  • Fort DJ, Paul RR. 2002. Enhancing the predictive validity of Frog Embryo Teratogenesis Assay–Xenopus (FETAX). J Appl Toxicol 22:185–91.
  • Geranio L, Heuberger M, Nowack B. 2009. The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–18.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22.
  • Gottschalk F, Kost E, Nowack B. 2013. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–87.
  • Groh KJ, Dalkvist T, Piccapietra F, Behra R, Suter MJ, Schirmer K. 2015. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology 9:81–91.
  • Hadrup N, Lam HR. 2014. Oral toxicity of silver ions, silver nanoparticles and colloidal silver-a review. Regul Toxicol Pharmacol 68:1–7.
  • He X, Aker WG, Fu PP, Hwang H-M. 2015. Toxicity of engineered metal oxide nanomaterials mediated by nano-bio-eco-interactions: a review and perspective. Environ Sci Nano 2:564–82.
  • Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. 2014a. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–86.
  • Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, et al. 2014b. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. PLoS One 9:e102108.
  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. 2014c. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. In: A. Quigg, ed. PLoS One. San Francisco, USA.
  • Jain K, Kesharwani P, Gupta U, Jain NK. 2010. Dendrimer toxicity: let's meet the challenge. Int J Pharm 394:122–42.
  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, et al. 2010. Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–5.
  • Kaosaar S, Kahru A, Mantecca P, Kasemets K. 2016. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicol in Vitro 35:149–62.
  • Kasemets K, Suppi S, Kunnis-Beres K, Kahru A. 2013. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants. Chem Res Toxicol 26:356–67.
  • Kashiwada S, Ariza ME, Kawaguchi T, Nakagame Y, Jayasinghe BS, Gärtner K, et al. 2012. Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. Environ Sci Technol 46:6278–87.
  • Kim J, Kim S, Lee S. 2011. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5:208–14.
  • Kim S, Ryu DY. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89.
  • Le Ouay B, Stellacci F. 2015. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–54.
  • Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukui PK, Xu XHN. 2012. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 25:1029–46.
  • Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE Jr. 2013. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–45.
  • Lubick N. 2008. Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617.
  • Ma H, Williams PL, Diamond SA. 2013. Ecotoxicity of manufactured ZnO nanoparticles-a review. Environ Pollut 172:76–85.
  • Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW. 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66.
  • Maurer LL, Yang X, Schindler AJ, Taggart RK, Jiang C, Hsu-Kim H, et al. 2016. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology 10:831–5.
  • Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. 2012. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–32.
  • Nations S, Wages M, Cañas JE, Maul J, Theodorakis C, Cobb GP. 2011. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83:1053–61.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–64.
  • Nieuwkoop PD, Faber J. 1956. Normal table of Xenopus laevis (Daudin). Amsterdam: North Holland Publishing Co.
  • Ong KJ, Zhao X, Thistle ME, Maccormack TJ, Clark RJ, Ma G, et al. 2014. Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8:295–304.
  • Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, Kudoh T, Tyler CR. 2013. Effects of particle size and coating on nanoscale Ag and TiO(2) exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 7:1315–24.
  • Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, et al. 2015. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult Zebrafish. ACS Nano 9:9573–84.
  • Pietroiusti A, Campagnolo L, Fadeel B. 2013. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9:1557–72.
  • Powers CM, Levin ED, Seidler FJ, Slotkin TA. 2011. Silver exposure in developing zebrafish produces persistent synaptic and behavioral changes. Neurotoxicol Teratol 33:329–32.
  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, et al. 2014. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–61.
  • Santo N, Fascio U, Torres F, Guazzoni N, Tremolada P, Bettinetti R, et al. 2014. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: does size matter? Water Res 53:339–50.
  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, et al. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–34.
  • Singh RP, Ramarao P. 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–59.
  • Tejamaya M, Romer I, Merrifield RC, Lead JR. 2012. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–17.
  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006.
  • Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, et al. 2013. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–14.
  • Vance ME, Kuiken T, Vejerano EP, Mcginnis SP, Hochella MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–80.
  • Volker C, Kampken I, Boedicker C, Oehlmann J, Oetken M. 2015. Toxicity of silver nanoparticles and ionic silver: comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicology 9:677–85.
  • Williams JR, Rayburn JR, Cline GR, Sauterer R, Friedman M. 2015. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos. Toxicol Rep 2:222–7.
  • Xiao Y, Vijver MG, Chen G, Peijnenburg WJ. 2015. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environ Sci Technol 49:4657–64.
  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–5.
  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–27.
  • Zhao CM, Wang WX. 2012. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6:361–70.
  • Zook JM, Long SE, Cleveland D, Geronimo CL, Maccuspie RI. 2011. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401:1993–2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.