737
Views
37
CrossRef citations to date
0
Altmetric
Original Article

Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring

, , , , , , , , , , , , , , & show all
Pages 484-495 | Received 29 Sep 2016, Accepted 22 Mar 2017, Published online: 17 Apr 2017

References

  • Ambalavanan N, Stanishevsky A, Bulger A, Halloran B, Steele C, Vohra Y, Matalon S. 2013. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol 304:L152–61.
  • Austin CA, Hinkley GK, Mishra AR, Zhang Q, Umbreit TH, Betz MW, et al. 2016. Distribution and accumulation of 10 nm silver nanoparticles in maternal tissues and visceral yolk sac of pregnant mice, and a potential effect on embryo growth. Nanotoxicology 10:654–61.
  • Baraldi E, Filippone M. 2007. Chronic lung disease after premature birth. N Engl J Med 357:1946–55.
  • Bowman DM, Van Calster G, Friedrichs S. 2010. Nanomaterials and regulation of cosmetics. Nat Nanotechnol 5:92.
  • Charehsaz M, Hougaard KS, Sipahi H, Ekici AI, Kaspar C, Culha M, et al. 2016. Effects of developmental exposure to silver in ionic and nanoparticle form: a study in rats. Daru 24:24.
  • Cooney TP, Thurlbeck WM. 1982. The radial alveolar count method of Emery and Mithal: a reappraisal 2–intrauterine and early postnatal lung growth. Thorax 37:580–3.
  • Drummond D, Baravalle-Einaudi M, Lezmi G, Vibhushan S, Franco-Montoya ML, Hadchouel A, et al. 2017. Combined effects of in utero and adolescent tobacco smoke exposure on lung function in C57Bl/6J mice. Environ Health Perspect 125:392–9.
  • Emery JL, Mithal A. 1960. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch Dis Child 35:544–7.
  • Franco ML, Waszak P, Banalec G, Levame M, Lafuma C, Harf A, Delacourt C. 2002. LPS-induced lung injury in neonatal rats: changes in gelatinase activities and consequences on lung growth. Am J Physiol Lung Cell Mol Physiol 282:L491–500.
  • Haberl N, Hirn S, Wenk A, Diendorf J, Epple M, Johnston BD, et al. 2013. Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats. Beilstein J Nanotechnol 4:933–40.
  • Hay WN, Thureen PJ, Anderson M. 2001. Intrauterine growth restriction. Neo Reviews 2:129–38.
  • Hollams EM, De Klerk NH, Holt PG, Sly PD. 2014. Persistent effects of maternal smoking during pregnancy on lung function and asthma in adolescents. Am J Respir Crit Care Med 189:401–7.
  • Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Loschner K, Larsen EH, et al. 2010. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol 7:16.
  • Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH. 2000. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–7.
  • Kramer BW, Kallapur S, Newnham J, Jobe AH. 2009. Prenatal inflammation and lung development. Semin Fetal Neonatal Med 14:2–7.
  • Kunze M, Klar M, Morfeld CA, Thorns B, Schild RL, Markfeld-Erol F, et al. 2016. Cytokines in noninvasively obtained amniotic fluid as predictors of fetal inflammatory response syndrome. Am J Obstet Gynecol 215:96e1–8.
  • Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH, Yu IJ. 2011. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–36.
  • Lu Z, Xiao J, Wang Y, Meng M. 2015. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. J Colloid Interface Sci 452:8–14.
  • Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V. 2012. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol 262:255–64.
  • Maritz GS, Cock ML, Louey S, Suzuki K, Harding R. 2004. Fetal growth restriction has long-term effects on postnatal lung structure in sheep. Pediatr Res 55:287–95.
  • Martirosyan A, Schneider YJ. 2014. Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–50.
  • Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee BW, Okada T, et al. 2016. Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles. Nanotoxicology 10:607–18.
  • Mullassery D, Smith NP. 2015. Lung development. Semin Pediatr Surg 24:152–5.
  • Oberdorster G. 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105.
  • Paul G, Prado Y, Dia N, Riviere E, Laurent S, Roch M, et al. 2014. Mn(II)-containing coordination nanoparticles as highly efficient T(1) contrast agents for magnetic resonance imaging. Chem Commun (Camb) 50:6740–3.
  • Philbrook NA, Winn LM, Afrooz AR, Saleh NB, Walker VK. 2011. The effect of TiO(2) and Ag nanoparticles on reproduction and development of drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257:429–36.
  • Presume M, Simon-Deckers A, Tomkiewicz-Raulet C, Le Grand B, Tran Van Nhieu J, Beaune G, et al. 2016. Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology 10:1535–44.
  • Qi W, Bi J, Zhang X, Wang J, Wang J, Liu P, et al. 2014. Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy times. Sci Rep 4:4352.
  • Ravel B, Newville M. 2005. Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–41.
  • Rosenberg A. 2008. The IUGR newborn. Semin Perinatol 32:219–24.
  • Roursgaard M, Jensen KA, Poulsen SS, Jensen NE, Poulsen LK, Hammer M, et al. 2011. Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. ScientificWorldJournal 11:801–25.
  • Roursgaard M, Poulsen SS, Poulsen LK, Hammer M, Jensen KA, Utsunomiya S, et al. 2010. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. Hum Exp Toxicol 29:915–33.
  • Saber AT, Jacobsen NR, Bornholdt J, Kjaer SL, Dybdahl M, Risom L, et al. 2006. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor. Part Fibre Toxicol 3:4.
  • Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al. 2015. Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PLoS One 10:e0119726.
  • Shen W, Zhang X, Huang Q, Xu Q, Song W. 2014. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6:1622–8.
  • Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15.
  • Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K. 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:20.
  • Smith BR, Ghosn EE, Rallapalli H, Prescher JA, Larson T, Herzenberg LA, Gambhir SS. 2014. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat Nanotechnol 9:481–7.
  • Solé VA, Papillon E, Cotte M, Walter PH, Susini J. 2007. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta 62:63–8.
  • Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN. 2011. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 205:105–15.
  • Szlachetko J, Cotte M, Morse J, Salome M, Jagodzinski P, Dousse JC, et al. 2010. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray Microscopy beamline ID21 (ESRF). J Synchrotron Radiat 17:400–8.
  • Tang JR, Karumanchi SA, Seedorf G, Markham N, Abman SH. 2012. Excess soluble vascular endothelial growth factor receptor-1 in amniotic fluid impairs lung growth in rats: linking preeclampsia with bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302:L36–46.
  • Valentino SA, Tarrade A, Aioun J, Mourier E, Richard C, Dahirel M, et al. 2016. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part Fibre Toxicol 13:39.
  • Vantelon D, Trcera N, Roy D, Moreno T, Mailly D, Guilet S, et al. 2016. The LUCIA beamline at SOLEIL. J Synchrotron Radiat 23:635–40.
  • Weber EM, Algers B, Wurbel H, Hultgren J, Olsson IA. 2013. Influence of strain and parity on the risk of litter loss in laboratory mice. Reprod Domest Anim 48:292–6.
  • Weibel ER. 1966. [Morphometric studies on the growth of gas exchange capacity of the rat lung]. Helv Physiol Pharmacol Acta 24:C56–9.
  • Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. 2008. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 32:321–8.
  • Wu ZX, Hunter DD, Kish VL, Benders KM, Batchelor TP, Dey RD. 2009. Prenatal and early, but not late, postnatal exposure of mice to sidestream tobacco smoke increases airway hyperresponsiveness later in life. Environ Health Perspect 117:1434–40.
  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–8.

References

  • Brar SK, Verma M. 2011. Measurement of nanoparticles by light-scattering techniques. Trends Analyt Chem 30:4–17.
  • Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, et al. 2010. Aging of TiO(2) nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut 158:3482–9.
  • Ma R, Levard C, Michel FM, Brown GE, JR., Lowry GV. 2013. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ Sci Technol 47:2527–34.
  • Rice SB, Chan C, Brown SC, Eschbach P, Han L, Ensor DS, et al. 2013. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia 50:663–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.