394
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans

, , , &
Pages 520-533 | Received 05 Feb 2017, Accepted 30 Mar 2017, Published online: 19 Apr 2017

References

  • Andrusiak MG, Jin Y. 2016. Context specificity of stress-activated mitogen-activated protein (MAP) kinase signaling: the story as told by Caenorhabditis elegans. J Biol Chem 291:7796–804.
  • Arur S, Ohmachi M, Berkseth M, Nayak S, Hansen D, Zarkower D, et al. 2011. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev Cell 20:677–88.
  • Bishop NA, Guarente L. 2007. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545–9.
  • Bitounis D, Ali-Boucetta H, Hong BH, Min D, Kostarelos K. 2013. Prospects and challenges of graphene in biomedical applications. Adv Mater Weinheim 25:2258–68.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–17.
  • Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Cha YJ, Lee J, Choi SS. 2012. Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere 87:49–54.
  • Chang Y, Yang S, Liu J, Dong E, Wang Y, Cao A, et al. 2011. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–10.
  • Chatterjee N, Kim Y, Yang J, Roca CP, Joo SW, Choi J. 2017. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology 11:76–86.
  • Chen H, Li H-R, Wang D-Y. 2017. Graphene oxide dysregulates Neuroligin/NLG-1-mediated molecular signaling in interneurons in Caenorhabditis elegans. Sci Rep 7:41655.
  • Chen L, Fu Y, Ren M, Xiao B, Rubin CS. 2011. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 70:51–65.
  • Chen P, Hsiao K, Chou C. 2013. Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 34:5661–9.
  • Cheng C, Wang D. 2016. Hydrogel-assisted transfer of graphene oxides into nonpolar organic media for oil decontamination. Angew Chem Int Ed Engl 55:6853–7.
  • Church DL, Guan KL, Lambie EJ. 1995. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121:2525–35.
  • Doudrick K, Herckes P, Westerhoff P. 2012. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Environ Sci Technol 46:12246–53.
  • Feng J, Bussiere F, Hekimi S. 2001. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–44.
  • Gao G, Deeb F, Mercurio JM, Parfenova A, Smith PA, Bennett KL. 2012. PAN-1, a P-granule component important for C. elegans fertility, has dual roles in the germline and soma. Dev Biol 364:202–13.
  • Geim AK. 2009. Graphene: status and prospects. Science 324:1530–4.
  • Geim AK, Novoselov KS. 2007. The rise of graphene. Nat Mater 6:183–91.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22.
  • Hirotsu T, Saeki S, Yamamoto M, Iino Y. 2000. The Ras-MAPK pathway is important for olfaction in Caenorhabditis elegans. Nature 404:289–93.
  • Honda Y, Honda S. 2002. Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 959:466–74.
  • Iwasaki K, Staunton J, Saifee O, Nonet ML, Thomas JH. 1997. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–22.
  • Iwasaki K, Toyonaga R. 2000. The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J 19:4806–16.
  • Kornfeld K, Horvitz HR. 1995. The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK. Genes Dev 9:756–68.
  • Kovtyukhova NI, Olivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, et al. 1999. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–8.
  • Lackner MR, Kim SK. 1998. Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. Genetics 150:103–17.
  • Lackner MR, Kornfeld K, Miller LM, Horvitz HR, Kim SK. 1994. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev 8:160–73.
  • Lee MH, Hook B, Pan G, Kershner AM, Merritt C, Seydoux G, et al. 2007. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3:e233.
  • Li B, Yang J, Huang Q, Zhang Y, Peng C, Zhang Y, et al. 2013. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater 5:e44.
  • Liang S, Xu S, Zhang D, He J, Chu M. 2015. Reproductive toxicity of nanosclae graphene oxide in male mice. Biomaterials 9:92–105.
  • Liu Y, Wang X, Wang J, Nie Y, Du H, Dai H, et al. 2016. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ Sci Technol 50:3154–64.
  • Liu Z-F, Zhou X-F, Wu Q-L, Zhao Y-L, Wang D-Y. 2015. Crucial role of intestinal barrier in the formation of transgenerational toxicity in quantum dots exposed nematodes Caenorhabditis elegans. RSC Adv 5:94257–66.
  • Matsukawa J, Matsuzawa A, Takeda K, Ichijo H. 2004. The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136:261–5.
  • Mello C, Fire A. 1995. DNA transformation. Methods Cell Biol 48:451–82.
  • Mohan N, Chen C, Hsieh H, Wu Y, Chang H. 2010. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–9.
  • Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K, Miyoshi H, et al. 2001. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 276:7713–16.
  • Nicholas HR, Hodgkin J. 2004. The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr Biol 14:1256–61.
  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, et al. 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–9.
  • Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, et al. 2010. The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in Caenorhabditis elegans. J Biol Chem 285:30274–81.
  • Qu G, Zhang S, Wang L, Wang X, Sun B, Yin N, et al. 2013. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 7:5732–45.
  • Shakoor S, Sun L-M, Wang D-Y. 2016. Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5:492–9.
  • Shephard F, Adenle AA, Jacobson LA, Szewczyk NJ. 2011. Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 6:e24686.
  • Shu C-J, Yu X-M, Wu Q-L, Zhuang Z-H, Zhang W-M, Wang D-Y. 2015. Pretreatment with paeonol prevents the adverse effects and alters the translocation of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. RSC Adv 5:8942–51.
  • Sundaram MV, Yochem JJ, Han M. 1996. A Ras-mediated signal transduction pathway is involved in the control of sex myoblast migration in Caenorhabditis elegans. Development 122:2823–33.
  • Seo HW, Cheon SM, Lee M, Kim HJ, Jeon H, Cha DS. 2015. Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans. Evid Based Complement Alternat Med 2015:524878.
  • Sun L-M, Lin Z-Q, Liao K, Xi Z-G, Wang D-Y. 2015. Adverse effects of coal combustion related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. Sci Total Environ 512–513:251–60.
  • Sun L-M, Wu Q-L, Liao K, Yu P-H, Cui Q-H, Rui Q, et al. 2016. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere 144:2392–400.
  • Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, et al. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–38.
  • Wagner EF, Nebreda AR. 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Genet 3:356–69.
  • Wang D-Y, Cao M, Dinh J, Dong Y-Q. 2013. Methods for creating mutations in C. elegans that extend lifespan. Methods Mol Biol 1048:65–75.
  • Wang D-Y. 2016. Biological effects, translocation, and metabolism of quantum dots in nematode Caenorhabditis elegans. Toxicol Res 5:1003–11.
  • Wang S, Wu L, Wang Y, Luo X, Lu Y. 2009. Copper-induced germline apoptosis in Caenorhabditis elegans: the independent roles of DNA damage response signaling and the dependent roles of MAPK cascades. Chem Biol Interact 180:151–7.
  • Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A. 2015. Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–9.
  • Wu Q-L, Rui Q, He K-W, Shen L-L, Wang D-Y. 2010. UNC-64 and RIC-4, the plasma membrane-associated SNAREs syntaxin and SNAP-25, regulate fat storage in nematode Caenorhabditis elegans. Neurosci Bull 26:104–16.
  • Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y. 2013. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5:9934–43.
  • Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y. 2014. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–906.
  • Wu Q-L, Zhi L-T, Qu Y-Y, Wang D-Y. 2016a. Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomed: Nanotechnol Biol Med 12:1175–84.
  • Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, et al. 2016b. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–91.
  • Yang J-N, Zhao Y-L, Wang Y-W, Wang H-F, Wang D-Y. 2015. Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans. Toxicol Res 4:1498–510.
  • Yang K, Li Y, Tan X, Peng R, Liu Z. 2013. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9:1492–503.
  • Yang R-L, Ren M-X, Rui Q, Wang D-Y. 2016b. A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214.
  • Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X-Y, et al. 2016a. Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–105.
  • Yu X-M, Guan X-M, Wu Q-L, Zhao Y-L, Wang D-Y. 2015. Vitamin E ameliorates the neurodegeneration related phenotypes caused by neurotoxicity of Al2O3-nanoparticles in C. elegans. Toxicol Res 4:1269–81.
  • Zanni Z, De Bellis G, Bracciale MP, Broggi A, Santarelli ML, Sarto MS, et al. 2012. Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett 12:2740–4.
  • Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin J, et al. 2012. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater Weinheim 24:5391–7.
  • Zhao Y-L, Jia R-H, Qiao Y, Wang D-Y. 2016d. Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. Nanomedicine: Nanotechnol Biol Med 12:735–44.
  • Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y. 2013. Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–57.
  • Zhao Y-L, Wu Q-L, Wang D-Y. 2015a. A microRNAs-mRNAs network involved in the control of graphene oxide toxicity in Caenorhabditis elegans. RSC Adv 5:92394–405.
  • Zhao Y-L, Wu Q-L, Wang D-Y. 2016b. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 79:15–24.
  • Zhao Y-L, Yang R-L, Rui Q, Wang D-Y. 2016a. Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024.
  • Zhao Y-L, Yang J-N, Wang D-Y. 2016c. A microRNA-mediated insulin signaling pathway regulates the toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Sci Rep 6:23234.
  • Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y. 2015b. Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233.
  • Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y. 2016e. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–79.
  • Zhi L-T, Fu W, Wang X, Wang D-Y. 2016a. ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–9.
  • Zhi L-T, Ren M-X, Qu M, Zhang H-Y, Wang D-Y. 2016b. Wnt ligands differentially regulate toxicity and translocation of graphene oxide through different mechanisms in Caenorhabditis elegans. Sci Rep 6:39261.
  • Zhi L-T, Qu M, Ren M-X, Zhao L, Li Y-H, Wang D-Y. 2017. Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon 113:122–31.
  • Zhu X, Shan Y, Xiong S, Shen J, Wu X. 2016. Brianyoungite/graphene oxide coordination composites for high-performance Cu(2+) adsorption and tunable deep-red photoluminescence. ACS Appl Mater Interfaces 8:15848–54.
  • Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, et al. 2016. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.