562
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Probabilistic risk assessment of emerging materials: case study of titanium dioxide nanoparticles

, , , , , , , & show all
Pages 558-568 | Received 22 Jul 2016, Accepted 16 Apr 2017, Published online: 01 Jun 2017

References

  • Agrios AG, Pichat P. 2005. State of the art and perspectives on materials and applications of photocatalysis over TiO2. J Appl Electrochem 35:655–63.
  • Allen BC, Kavlock RJ, Kimmel CA, Faustman EM. 1994. Dose-response assessment for developmental toxicity: II. Comparison of generic benchmark dose estimates with no observed adverse effect levels. Toxicol Sci 23:487–95.
  • Arts JHE, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, et al. 2015. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 71:S1–S27.
  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–41.
  • Bach S, Schmidt E. 2008. Determining the dustiness of powders-a comparison of three measuring devices. Ann Occup Hyg 52:717–25.
  • Barlow S, et al. (European Food Safety Authority) 2009. Guidance of the scientific committee on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 1150:1–72.
  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, et al. 2002. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 70:86–97.
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–57.
  • Breum NO. 1999. The rotating drum dustiness tester: variability in dustiness in relation to sample mass, testing time, and surface adhesion. Ann Occup Hyg 43:557–66.
  • Brouwer DH, Duuren-Stuurman B, Berges M, Bard D, Jankowska E, Moehlmann C, Pelzer J, Mark D. 2013. Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. J Nanopart Res 15:2090.
  • Brouwer DH, Links IHM, De Vreede SAF, Christopher Y. 2006. Size selective dustiness and exposure; simulated workplace comparisons. Ann Occup Hyg 50:445–52.
  • Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–959.
  • Cherrie JW. 1999. The effect of room size and general ventilation on the relationship between near and far-field concentrations. Appl Occup Environ Hyg 14:539–46.
  • Chung KY, Burdett GJ. 1994. Dustiness testing and moving towards a biologically relevant dustiness index. Ann Occup Hyg 38:945–49.
  • Crump KS. 1984. A new method for determining allowable daily intakes. Fundam Appl Toxicol 4:854–71.
  • Crump KS. 1995. Calculation of benchmark doses from continuous data. Risk Anal 15:79–89.
  • Cullen RT, Stone V, Wilson M, Donaldson K. 2002. Toxicity of volcanic ash from Montserrat. Occup Environ Med. Available from: http://www.iom-world.org/pubs/IOM_TM0201.pdf
  • Czajka M, Sawicki K, Sikorska K, Popek S, Kruszewski M, Kapka-Skrzypczak L. 2015. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol In Vitro 29:1042–52.
  • Davis JA, Gift JS, Zhao QJ. 2011. Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol 254:181–91.
  • Donaldson K, Poland CA. 2013. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol 24:724–34.
  • European Chemicals Agency. 2012. Chapter R.8: Characterisation of dose[concentration]-response for human health. Guidance on information requirements and chemical safety assessment.
  • European Commission. 2011. Commission recommendation on the definition of nanomaterial. Off J Eur Union L 38–40. Available from: https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission-recommendation-on-the-definition-of-nanomater-18102011_en.pdf
  • European Commission. 2012. Second regulatory review on nanomaterials. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee.
  • European Committee for Standardization (CEN). 2013. EN 15051 Workplace exposure. Measurement of the dustiness of bulk materials. Requirements and choice of test methods.
  • European Food Safety Authority. 2009. The Potential Risks Arising from Nanoscience and Nanotechnologies on Food and Feed Safety. The EFSA Journal 958, (European Food Safety Authority).
  • Fonseca AS, Maragkidou A, Viana M, Querol X, Hämeri K, de Francisco I, et al. 2016. Process-generated nanoparticles from ceramic tile sintering: emissions, exposure and environmental release. Sci Total Environ 565:922–32.
  • Fransman W, Van Tongeren M, Cherrie JW, Tischer M, Schneider T, Schinkel J, et al. 2011. Advanced reach tool (ART): Development of the mechanistic model. Ann Occup Hyg 55:957–79.
  • Ganser GH, Hewett P. 2017. Models for nearly every occasion: Part II – Two box models. J Occup Environ Hyg 14:58–71.
  • Global and China Titanium Dioxide Industry Report, 2014–2017. 2015. Available at: http://www.prnewswire.com/news-releases/global-and-china-titanium-dioxide-industry-report-2014-2017-300077141.html
  • Grassian VH, Haes AJ, Mudunkotuwa IA, Demokritou P, Kane AB, Murphy CJ, et al. 2016. NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environ Sci Nano 3:15–27.
  • Greßler S, Nentwich M. 2012. Nano and Environment–Part II: Hazard potentials and risks. Nano Trust Dossiers 27:1–6.
  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K. 1995. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7:533.
  • Hext PM, Tomenson JA, Thompson P. 2005. Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 49:461–72.
  • Hinds WC. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley-Interscience.
  • Iavicoli I, Leso V, Bergamaschi A. 2012. Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. J Nanomater 2012:Article ID 964381. doi: 10.1155/2012/964381
  • Jager T, Vermeire TG, Rikken MGJ, Van der Poel P. 2001. Opportunities for a probabilistic risk assessment of chemicals in the European Union. Chemosphere 43:257–64.
  • Jayjock MA, Armstrong T, Taylor M. 2011. The Daubert Standard as applied to exposure assessment modeling using the two-zone (NF/FF) model estimation of indoor air breathing zone concentration as an example. J Occup Environ Hyg 8:D114–22.
  • Koivisto AJ, Aromaa M, Mäkelä JM, Pasanen P, Hussein T, Hämeri K. 2012. Concept to estimate regional inhalation dose of industrially synthesized nanoparticles. ACS Nano 6:1195–203.
  • Koivisto AJ, Lyyränen J, Auvinen A, Vanhala E, Hämeri K, Tuomi T, Jokiniemi J. 2012. Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhal Toxicol 24:839–49.
  • Koivisto AJ, Palomäki JE, Viitanen AK, Siivola KM, Koponen IK, Yu M, et al. 2014. Range-finding risk assessment of inhalation exposure to nanodiamonds in a laboratory environment. Int J Environ Res Public Health 11:5382–402.
  • Koivisto AJ, Jensen AC, Levin M, Kling KI, Maso MD, Nielsen SH, Jensen KA, Koponen IK. 2015. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory. Environ Sci Process Impacts 17:62–73.
  • Koivisto AJ, Aromaa M, Koponen IK, Fransman W, Jensen KA, Mäkelä JM, Hämeri KJ. 2015. Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis. J Nanopart Res 17:177.
  • Lee KP, Trochimowicz HJ, Reinhardt CF. 1985. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years Toxicol Appl Pharmacol 79:179–92.
  • Leeuwen CJ, Vermeire TG. 2007. Risk Assessment of Chemicals: An Introduction. Netherlands: Springer. doi:10.1007/978-1-4020-6102-8
  • Levin M, Rojas E, Vanhala E, Vippola M, Liguori B, Kling KI, Koponen IK, et al. 2015. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment. J Nanopart Res 17:1–13.
  • Levin M, et al. 2015. Limitations in the use of unipolar charging for electrical mobility sizing instruments: a study of the fast mobility particle sizer. Aerosol Sci Technol 49:556–65.
  • Levin M, et al. 2016. Can we trust real time measurements of lung deposited surface area concentrations in dust from powder nanomaterials? Aerosol Air Qual Res 16:1105–17.
  • Liguori B, Jensen ACØ, Hansen SF, Baun A, Jensen KA. 2016. Sensitivity Analysis of the exposure assessment module in NanoSafer version 1.1: Ranking of Determining Parameters and Uncertainty. unpublished work.
  • Limpert E, Stahel W. a, Abbt M. 2001. Log-normal Distributions across the Sciences: Keys and Clues. Bioscience 51:341.
  • Muhle H, Bellmann B, Creutzenberg O, Dasenbrock C, Ernst H, Kilpper R, et al. 1991. Pulmonary response to toner upon chronic inhalation exposure in rats. Fundam Appl Toxicol 17:280–99.
  • National Institute for Occupational Safety and Health. 2011. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide.
  • Noël A, Truchon G. 2015. Inhaled titanium dioxide nanoparticles: a review of their pulmonary responses with particular focus on the agglomeration state. Nano Life 5:1450008.
  • Oberdorster G, Ferin J, Lehnert BE. 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–9.
  • Ogden T. 2006. Annals of occupational hygiene at volume 50: many achievements, a few mistakes, and an interesting future. Ann Occup Hyg 50:751–64.
  • Organization for Economic Cooperation and Development. 2009. Co-operation on risk assessment: Prioritization of important issues on risk assessment of manufactured nanomaterials (Final Report). Development 33.
  • Organization for Economic Cooperation and Development. 2012. Inhalation toxicity testing: expert meeting on potential revisions to OECD test guidelines and guidance document.
  • Pietroiusti A. 2012. Health implications of engineered nanomaterials. Nanoscale 4:1231.
  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR. 2009. Estimates of Upper Bounds and Trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–33.
  • Rossi EM, et al. 2009. Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci 113:422–33.
  • Royal Society and Royal Academy of Engineering. 2004. Nanoscience and nanotechnologies: opportunities and uncertainties. Nanoscience and Nanotechnologies Opportunities and Uncertainties (Royal Society).
  • Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van Duuren-Stuurman B, et al. 2011. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 21:450–63.
  • Schneider T, Jensen KA. 2008. Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann Occup Hyg 52:23–34.
  • Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. 2016. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172:1–36.
  • Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15.
  • Shultz M. 2007. Comparing test searches in PubMed and Google Scholar. J Med Libr Assoc 95:442–5.
  • Simko M, Nosske D, Kreyling WG. 2014. Metrics, dose, and dose concept: The need for a proper dose concept in the risk assessment of nanoparticles. Int J Environ Res Public Health 11:4026–48.
  • Slob W, Bakker MI, Biesebeek JD, Te Bokkers BGH. 2014. Exploring the uncertainties in cancer risk assessment using the integrated probabilistic risk assessment (IPRA) approach. Risk Anal 34:1401–22.
  • Slob W, Pieters MN. 1998. A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: general framework. Risk Anal 18:787–98.
  • Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, et al. 2014. ITS-NANO-prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11:9
  • The Netherlands’ National Institute for Public Health and the Environment (RIVM). 2015. PROAST.
  • The Project on Emerging Nanotechnologies. 2015. The Nanotechnology Consumer Products Inventory. Available at: http://www.nanotechproject.org/cpi/
  • Tran CL, Cullen RT, Buchanan D, Jones AD, Miller BG, Searl A, Davis JMG. 1999. Investigation and prediction of pulmonary responses to dust. Available at: http://www.hse.gov.uk/research/crr_pdf/1999/crr99216b.pdf
  • U.S. Geological Survey. 2012. 2012 Minerals Yearbook – Titanium. Available at: http://minerals.usgs.gov/minerals/pubs/commodity/titanium/myb1-2012-titan.pdf
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–80.
  • Varner KE, Rindfusz K, Gaglione A, Viveiros E. 2010. Nano Titanium Dioxide Environmental Matters: State of the Science Literature Review. Available at: <http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id =498019>
  • Vincent JH. 1995. Aerosol Science for Industrial Hygienists. Oxford, UK: Elsevier.
  • Yokel RA, MacPhail RC. 2011. Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 6:7.
  • Zhang X, Li W, Yang Z. 2015. Toxicology of nanosized titanium dioxide: an update. Arch Toxicol 89:2207–17.
  • Zhang Y, Banerjee S, Yang R, Lungu C, Ramachandran G. 2009. Bayesian modeling of exposure and airflow using two-zone models. Ann Occup Hyg 53:409–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.